
Thwarting Traffic Confirmation Attacks in Tor with Traffic Modulation and Cover
Traffic

(extended abstract of the MSc dissertation)

Afonso Pedro Antunes da Mota Gomes
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professors Nuno Santos and Kevin Gallagher

Abstract—Tor is a popular low-latency anonymity network
that allows users to surf the Internet privately. Unfortunately,
the Tor network is known to be vulnerable to traffic confir-
mation attacks, i.e. attacks where an adversary can observe a
traffic flow both into and out of the Tor network. These attacks
work by counting the times between packets and looking at
their sizes to correlate one flow entering the Tor network
with a flow exiting the Tor network. Thus, the adversary
can compromise the anonymity of traffic between a client
and a server. Recent approaches to anonymity have suggested
techniques such as mixing real traffic with covert traffic
and delaying packets for an amount of time chosen from
a specific statistical distribution, in order to frustrate traffic
confirmation attacks. However, most of the proposed solutions
to this problem require the deployment of new anonymity
systems, which may be a challenge, considering the current
size and adoption of the Tor network. In this project, we study
the feasibility of integrating traffic modulation and loop cover
traffic mixing into Tor. We develop a system, called Shaffler,
and perform an extensive analysis of it to determine whether
these techniques help defend against known traffic confirmation
attacks, and if so, what performance penalties are incurred.

I. INTRODUCTION

The Internet has become a fundamental part of people’s
lives, yet it has also presented a major issue with regards to
privacy and anonymity. This is because standard protocols
for Internet communication are based on strong traffic-
identifying metadata, such as source and destination IP
addresses. These IP addresses are necessary for communi-
cation parties to establish TCP/IP connections and answer
each other’s messages, making them powerful identifiers that
allow network observers, such as Internet Service Providers
(ISPs), to trace communications to a sender and a receiver,
thus making it difficult to remain anonymous online.

Fortunately, there are systems that can offer users im-
proved anonymity. The most well-known of these is the
Tor network [1]. When using Tor, the sender’s traffic is
routed through a minimum of three ”onion routers” before
it reaches the recipient. The sender’s traffic is encrypted in
sequence, with all the secret keys negotiated between the
sender and each node of the circuit. As traffic passes through
the circuit, each node decrypts it with its key, revealing the
address of the next node. This way, only the sender knows
both its own and the recipient’s IP addresses.

Despite the strong anonymity properties provided by the
Tor onion routing protocols, there are still more complex
methods to identify the parties involved in a communication.
Traffic correlation attacks [1] are one of these, which involve
the attempt to link patterns in traffic sent by a user to the Tor
network with patterns of traffic leaving the Tor network and
arriving at a remote host. Dingledine et al. [1] refer to these
attacks as end-to-end timing correlation, when the attack is
based on timing patterns, and end-to-end volume correlation
when an attacker attempts to correlate flows through the
volume of packets.

For a long period of time, it was thought difficult to launch
these attacks in practice due to the geographical dispersion
of Tor circuits’ routes and the difficulty for a single ISP
to intercept traffic at both communication endpoints of a
Tor circuit. However, traffic correlation attacks are now
becoming more of a realistic threat to the anonymity of
Tor users, as they can be launched on a large scale by a
coalition of ISPs that are similar to state-level adversaries.
[2] conducted an empirical study and found that up to 40%
of all Tor traffic is vulnerable to attacks by traffic correlation
from network-level attackers; 42% from Autonomous Sys-
tems (ASs) that may collaborate with each other and 85%
from state-level adversaries. Users in certain countries (such
as China and Iran) are particularly affected, since 95% of
all possible circuits are vulnerable to traffic correlation. A
second study by Johnson et al. [3] revealed that 80% of all
users can be identified when faced with a relay-level attacker.
Surprisingly, most users can be successfully identified within
three months by an AS-level attacker. When ASs collaborate,
they can correctly correlate users in 90 times less time.
When targeting a specific web user, collaborating ASs can
effectively deanonymize them in a single day.

The research community has been striving to create new
defenses to protect Tor users from potential risks [2, 4–8].
Das et al. [9] coined the term anonymity trilemma to describe
the problem of having to sacrifice at least one between
strong anonymity, low latency, and low resource usage. This
work investigates two defensive techniques to improve Tor’s
anonymity: traffic modulation, which comes at the cost of
latency, and cover traffic generation, which mainly sacrifices
resource usage.

1

Low
Latency

Resistant
to TCA

Traffic
Modulation

Cover
Traffic

Compatible with
the Tor Network

Tor [1] ✓ ✗ ✗ ✗ ✓
Vuvuzela [11] ✗ ✓ ✗ ✓ ✗
Atom [12] ✗ ✓ ✓ ✗ ✗
Loopix [13] ✓ ✓ ✓ ✓ ✗
Nym [14] ✓ ✓ ✓ ✓ ✗
Shaffler ✓ ✓ ✓ ✓ ✓

Table I
COMPARISON OF VARIOUS ANONYMITY SYSTEMS.

Our goal is to develop a system that decreases the ef-
fectiveness of traffic correlation attacks by focusing on two
principles: making flows in the network indistinguishable
and increasing the number of flows passing through the entry
or exit nodes. Regarding the first principle, our approach is to
employ traffic modulation in the middle of a circuit, making
the timing patterns observed by an adversary at both ends of
a circuit different. For the second principle, we explore the
generation of cover traffic, where clients send cover traffic
to a self-hosted Onion Service (OS), using the same guard
node for all circuits, thus increasing the number of flows
that pass through that entry node.

Based on these two principles, we developed a system
called Shaffler, which provides a functional implementation
of both techniques, traffic modulation and cover traffic, in
Tor, while maintaining compatibility with the existing infras-
tructure. Furthermore, we present an extensive evaluation of
Shaffler and its various configuration options, made possible
by the use of the Shadow [10] network simulator.

II. RELATED WORK

One of the most powerful classes of attacks aimed at
deanonymizing Tor circuits are correlation attacks. One
of the first correlation attacks based on timing analysis
was proposed by Shmatikov and Wang [5]. Inter-packet
timing information is usually not carefully protected in mix
networks, since it would require delay packets to hide timing
patterns. An attacker can exploit this timing property by
correlating the inter-packet time on both endpoint links,
concluding that those links belong to the same circuit, which
would tie a source to the corresponding destination.

Another very influential work for performing flow corre-
lation is DeepCorr [15]. It uses advanced machine learning
algorithms, instead of statistical metrics, to conduct accurate
flow correlation on Tor. Contrary to previous attacks, Deep-
Corr learns a correlation function that is able to link flow
samples regardless of their destination, while accounting for
the unpredictability of the Tor network. Another influential
and current state-of-the-art work described in the literature is
DeepCoFFEA [16], which is more effective than DeepCorr,
while also introducing a significant speedup.
Defenses against traffic correlation: In their work,
Shmatikov and Wang [5] propose an approach consisting
of using intermediate relays to inject dummy packets to
normalize statistical information, named adaptive padding.
This padding would reduce the ability of an adversary to
fingerprint packets on a circuit.

To protect against traffic correlation attacks based on
machine learning techniques, as in DeepCorr, Nasr et al. [15]
propose that Tor should enforce the use of pluggable trans-
ports across all relays, instead of just on bridges, as in
vanilla Tor. However, while the use of pluggable transports
enables the obfuscation of both traffic patterns and content,
the deployment of such a solution translates in significant
performance reductions and is thus disregarded as a feasible
defense against correlation attacks to be implemented in Tor.
Other recent and promising countermeasures against traffic
correlation attacks rely on the employing of AS-aware relay
selection mechanisms [2, 7, 8] that effectively decrease the
probability that an adversary is in a position necessary to
observe traffic and carry out a correlation attack.
Other anonymity systems: In addition to the defensive
mechanisms studied for Tor that address the challenge of
traffic correlation attacks, various alternative anonymity sys-
tems have emerged, each incorporating a wide range of tech-
niques design to defend against traffic analysis attacks. Sys-
tems such as Loopix [13] and Nym [14] use a combination
of two interesting techniques: (i) traffic modulation, which
modifies the timing patterns observed in traffic, through
the application of delays based on a statistical distribution;
(ii) cover traffic generation, which not only modifies the
volume patterns found in traffic, but also further perturbs
the timing patterns. Table ?? presents a summary of some
characteristics provided by Shaffler, and compares it with
various other anonymity systems. Although the techniques
we aim to use are already present in many anonymity
systems, Shaffler aims to bring these techniques to the Tor
network, providing a version of Tor that not only supports
them, but also maintains compatibility with the existing Tor
infrastructure.

III. THREAT MODEL

Our threat model extends Tor’s original threat model by
adding focus to the threat of traffic correlation, which is
listed as a non-goal of Tor in the original paper [1]. Specifi-
cally, we consider our main adversary to be an attacker that
can observe the ingress and egress flows of a circuit and may
attempt to correlate them. Although this threat model does
not consider global passive adversaries, it does assume that
adversaries may have the ability to monitor network traffic,
either by tapping into the network at various points or by
controlling routers used in a circuit. However, we limit the
strength of the attacker to being able to control at most two
out of the three Onion Relays (ORs) used in a circuit. The
most threatening of the resulting combinations are the entry
and exit nodes, considering that the objective is to perform
traffic correlation. As such, we assume that the middle
node is trusted. Similarly to Tor’s original threat model, we
consider that the exit relay of a circuit may be compromised,
meaning that the attacker may have access to its internal
state. However, we do not consider active attacks in addition
to those considered in the original threat model. Attackers
may also have access to advanced computing resources

2

that, while not enough to break cryptographic primitives,
can be used to deanonymize users. Adversaries may also
possess sophisticated traffic analysis techniques based on
machine learning algorithms. These adversaries could be
embodied by governments, law enforcement agencies, or
other organizations with the resources and capabilities to
conduct mass surveillance.

IV. DESIGN

Shaffler aims to protect Tor clients against traffic corre-
lation attacks. To do this, Shaffler proposes a new traffic
mixing strategy for Tor. Considering that we want to protect
the circuit of a specific Tor client (a target circuit), this
approach is based on two main ideas. First, we want to
ensure that the entry node, the exit node, or both receive
enough concurrent covert traffic so that it can disguise the
packets tunneled through the target circuit. Otherwise, in the
extreme case where the target circuit is the only circuit being
relayed through the entry and exit nodes, the adversary can
trivially infer that a single source is transmitting packets
through both nodes and perform timing and volumetric
analysis to deanonymize the client.

To prevent this problem, Shaffler generates client-
controlled covert traffic directed toward the entry node of
the circuit. This is done by running a dedicated web server
behind an OS in the client’s own machine and initializing
a cover client, which creates covert sessions with that OS.
By using the same Tor process for the real user traffic, the
cover client traffic, as well as the cover OS traffic, we not
only ensure a better mixing of all types of traffic, but also
ensures the usage of the same guard node for all traffic.

Secondly, Shaffler will further perturb the timings of
the packets tunneled through both the target circuit and
the covert OS sessions, making timing analysis harder for
an adversary to perform. This perturbation is achieved by
carefully delaying packets at the middle node of a circuit so
that the timing patterns observed at the entry of the circuit
suffer modifications before reaching the exit of the circuit,
where an adversary would expect to observe them again. By
making modifications to the timing patterns of traffic in the
middle of the circuit, we make it harder for an adversary
to accurately identify correlations between timing patterns
observed at both edges of the circuit. Additionally, when
used in combination with the generation of cover traffic, it
may increase the probability that flows observed at other exit
points of the network are identified as being more similar to
a flow observed at the entry than the truly related exit flow.

However, packet delaying must be achieved without caus-
ing visible alterations in the typical packet time distributions
of regular Tor circuits and without introducing significant
overheads to the end-to-end circuit latency. Furthermore,
modulating packet timings should be performed without the
need to rely on the correct or informed behavior of the
exit nodes, which could be controlled by the adversary.
To satisfy these requirements, our idea is to implement
packet timing modulation controlled by the client and with

the cooperation of the middle nodes, employing specific
modulation functions that need to be carefully studied.

With all this in mind, we designed Shaffler following
the architecture depicted in Figure 1. We propose to in-
tegrate four custom components for modulating traffic: a
modulation instructions decoder, a modulation instructions
encoder, a modulation function, and a cell delayer. These
components can be observed in the Tor software stack,
colored orange in Figure 1, at the client endpoint and at
the mix nodes. In addition to these components, the client
will include an additional component named cover manager
which will be responsible for setting up and maintaining
covert OS sessions, by deploying the necessary processes.
This component and its spawned processes can be seen
represented in the Client’s system in Figure 1, colored dark
gray. Together, these components generate cover traffic and
delay the transmitted data towards preventing attacks carried
out by an adversary that wishes to correlate the traffic
observed at both endpoints of a circuit.

A. Traffic Modulation

One of the techniques used by Shaffler is traffic mod-
ulation, which consists of delaying traffic through the use
of a modulation function that specifies how delays are
chosen. These modulation functions can be based on mul-
tiple approaches, ranging from state machines to statistical
distributions.
Modulation functions: Although our main objective in this
work is to provide and study modulation functions based
on statistical distributions, our main focus is also to design
our system in such a way that other researchers can easily
implement and test their own modulation functions. Shaf-
fler provides the following modulation functions: Uniform,
Normal, Poisson, Exponential and Lognormal.
Who modulates: Considering our threat model, which states
that the entry and exit nodes of a circuit may be observed by
an adversary, we decided to assign this responsibility to the
middle node, which our threat model assumes to be trusted
and which is in the best position in the circuit to be able
to modify the traffic patterns between the two observation
points of the path followed by the user’s traffic.
Who decides how to modulate: To allow clients to cus-
tomize their protection, we decided on an approach in which
both the client and the delaying node have a role to play. The
client is able and expected to provide, during the creation
of the circuit, instructions to the delaying node on how
traffic should be modulated. This information must then be
remembered by the delaying node so that it may follow those
instructions when deciding on a delay to apply to a cell
passing through that circuit.
How traffic is delayed: To avoid changing the order of
cells, delays must not be applied in relation to the arrival of
a cell, but instead in relation to the time the previous cell
was sent. The only exception to this is if the previous cell
has been sent too long ago, which would lead to no delay

3

Client's System

Tor Browser

SOCKSv5 Proxy
Guard
Node

Middle Node
Modulation Instructions

Decoder
Modulation Function

Cell Delayer
Tor Client

Cover Manager

Cover Onion Service

Cover Client

Cover Web Server

WSGI Server

Reverse Proxy

Application
Middle Node

Middle Node

Exit
Node

Exit Node

Rendezvous
Point

Modulation Instructions
Encoder

Normal Traffic

Cover Traffic

Destination
Server

Tor Network

Figure 1. Shaffler system architecture.

being applied. In this case, the delay must exceptionally be
applied in relation to the arrival time of the cell.

B. Generation of Cover Traffic

As mentioned previously, our solution resorts to generat-
ing cover traffic to complement the traffic modulation tech-
nique explained above and carried out at the circuits’ middle
nodes. The goal is to strengthen the anonymity guarantees
provided by Shaffler by further hindering correlation of the
flows captured near the client and the ones captured near
the webserver being accessed.

Shaffler does this by generating artificial Tor traffic and
directing it towards the legitimate circuit’s guard node.
Instead of accessing a different publicly available webserver,
our solution spawns one in the client’s machine, making
it accessible through an OS, and looping the traffic in an
approach similar to the one used in Loopix [13]. This allows
us to both increase the amount of extra traffic crossing the
guard node and better control its characteristics by adjusting
the server’s response as needed.

A possible alternative to using an OS would be to use
a simple web server, also hosted on the client’s machine.
However, while initially it might seem to reduce the load of
the technique on the network, that is not the case. Although
the number of non-target ORs that get affected by the traffic
is halved, the number of times a single flow passes through
the target node is also halved. Additionally, by using an OS
instead of a simple web server, we can avoid forwarding
cover traffic through exit nodes, which are less common
in the Tor network than other types of nodes. Using an
OS we also avoid requiring that users configure Network
Address Translation (NAT) on their local network to make
the web server accessible from outside the network. For
these reasons, we decided to use an OS.

Besides spawning an OS to receive and respond to loop
traffic, Shaffler also runs a dedicated process responsible
for generating it. This component, called cover client, sends
requests to the client’s OS, making sure to do so via the
same guard node as the legitimate traffic. This cover client

is customizable, allowing us to control the frequency of the
requests and adjust the desired response from the OS. The
highly customizable nature of both cover OS and cover client
enables Shaffler to tailor the generation of cover traffic to
the legitimate one’s characteristics.

Shaffler’s design requires all three components to send
traffic through the same Tor process running on the user’s
machine. This makes it so we can ensure all packets sent
to the Tor network do so via the same guard Node with
minor configuration required. The fact that all Tor traffic
sent from the user’s machine enters the network through
the same guard hinders an attacker’s ability to correlate the
flows captured at both the guard and exit nodes. In fact,
even if the packets captured near the web server concern
only the user’s access to it, the packets captured near the
guard now consist of a mix of web server traffic and cover
traffic. Both OS requests and responses can be modulated as
needed, allowing for the introduction of further variability.

V. IMPLEMENTATION

To implement Shaffler we used two programming lan-
guages, C and Python. To implement traffic modulation, we
modified version 0.4.7.13 of Tor, which is written in the C
language. For the implementation of our cover traffic tech-
nique we instead used Python 3.11.2. This section provides
an overview of Shaffler’s implementation details.

A. Applying delays

To implement cell delays, we identified two promising
utilities already implemented in Tor: queues and timers. In
the vanilla implementation of Tor, when a cell is prepared
to be sent through a communication channel to a peer, it
is placed in a queue. This queue, along with the queues of
all other active channels, is then managed by a scheduler.
Our implementation involves making some changes to this
process by intercepting the insertion of cells into these
queues. Figure 2 shows a diagram representing this modified
process.

4

rt4
Exit Queue

rt-1

Delay Queue
rt0rt2 rt1rt3

rt0

rtn

Tor cell

Ready time

Figure 2. Diagram showing the process for delaying Tor cells. Includes
the usage of a delay queue that stores cells ordered by ready time (rtn ≤
rtn+1) and a single timer that waits for the first cell’s ready time.

We introduce an additional queue for each active channel,
which we call delay queue. The purpose of this queue is to
store all cells that must be delayed and whose delay time has
not yet been completed. When a cell that must be delayed is
received, it is inserted into the delay queue of the outgoing
channel and is only moved to the same channel’s cell queue
upon completing their assigned delay time.

To update a cell when its assigned delay time has been
completed, we use timers. These timers can be configured
with callback functions that are called after a specified time
has passed. This allows us to define a callback function that
moves a given cell from one queue to the other, and with
that, when a cell arrives, we can create a timer with the
desired duration and with that function as callback.

B. Modulating Traffic

Our traffic modulation method relies on obtaining a value
that we call ready time for each cell. When a new cell must
be delayed, the first thing that is done is to generate a delay
value for it, based on the delay policy. To generate this
value, a function called get_delay_timeval() checks
the delay policy and calls the corresponding modulation
function to generate the delay value. By separating the code
in this way, we allow the addition of new delay modes in
the future, without requiring too many changes in the code.

The ready time for cell n is then calculated by adding the
delay chosen for this cell to the ready time of the last cell
processed: ready timen = ready timen−1+delayn. This
ready time is stored along with each cell, so it is possible to
keep track of when it is ready to be moved to the cell queue.
This method provides an important characteristic of order
preservation, which not only ensures the correct functioning
of Tor but also allows us to check only the cell at the head
of the delay queue for its ready time. It also allows us to
use a singular timer to transfer cells from the delay queue
to the cell queue. This timer is scheduled for the ready time
of the cell at the head of the delay queue.

When the timer fires, all the cells in the queue that
are ready are moved to the cell queue, and the timer is
rescheduled based on the new head of the queue. The reason
we check the ready time of multiple cells and not only the
head of the queue is because of the limited resolution of the
timers, which is one millisecond. This means that delays of
less than 1 millisecond between cells might cause multiple

cells to be ready when the timer is triggered.

C. Encoding and decoding delay policies

To allow clients to customize the modulation performed
at the middle nodes, we implemented a method that piggy-
backs on Tor’s existing protocol for creating circuits, which
is described in Figure 3. The original protocol works as
follows: When a client desires to create a new circuit, it
sends a CREATE cell to the desired entry node and expects
a CREATED cell as response, indicating that the entry node
is now part of the circuit. After that, the client, to extend
the circuit to a middle node, sends an EXTEND cell along
the circuit, which is transformed into a CREATE cell by the
entry node and sent to the desired middle node. The middle
node then responds with a CREATED cell that is repackaged
into an EXTENDED cell by the entry node and sent to the
client, to inform him of the success in adding the middle
node to the circuit.

These messages sent to add the middle node to the circuit
provide an opportunity to send information towards the
middle node. These four types of cell (CREATE, CREATED,
EXTEND, and EXTENDED) do not fully occupy the 509
bytes of their payload, allowing us to use the remaining
space to send a specification on how to modulate traffic to
the middle node, which we call delay policy.
Modified protocol: The modifications start when sending
the EXTEND cell, whose objective is to add the middle
node to the circuit. The client appends to the payload of
the EXTEND cell a 16-byte magic number followed by the
delay policy itself.

Upon receiving this EXTEND cell, the entry node will
check for the presence of the magic number, and in case it
is found, will copy the magic number and the delay policy
that follows it to the payload of the CREATE cell, in a
similar way to what was done previously for the EXTEND
cell. Next, the entry node sends this new CREATE cell to the
middle node, which will again check if the magic number
is present in the payload and, if so, will proceed to extract
and interpret the delay policy.

After interpreting the contents of the cell, the middle node
inserts them into the corresponding or_circuit_t data
structure, so that all communications from there onward may
be delayed based on the specified delay policy.

Furthermore, a torrc [17] option is provided to ORs to
allow them to fully reject delaying traffic and performing
traffic modulation, called DisableDelays. After check-
ing the internal policy regarding the acceptance of traffic
delaying and successfully obtaining the delay policy, the
middle node then appends to the CREATED cell a different
magic number, to inform the client of the successful appli-
cation of the delay policy.

Additionally, we provide the client with the option to
enforce the usage of the delay policy. When enabled, this
option makes it so that a circuit is destroyed when the
expected magic number confirming the usage of the delay
policy is not recognized.

5

Client Entry Node Middle Node

 CREATE

 CREATED

 EXTEND*

 EXTENDED**

 CREATE*

 CREATED**

struct delay_policy_t

mode : uint8
parameter1 : double
parameter2 : double
maximum : double

DELAY_POLICY_MAGIC

"DelayPolDelayPol" : char[16]

DELAY_POLICY_RESPONSE_MAGIC

"DelayPolicyResOK" : char[16]

Payload includes new data:
 - DELAY_POLICY_MAGIC
 - struct delay_policy_t

Payload includes new data:
 - DELAY_POLICY_RESPONSE_MAGIC

*

**

Legend

Figure 3. Diagram showing the additions made to the circuit creation protocol to allow the communication of delay policies.

Additional aspects: The reason we use magic numbers is
to allow Shaffler to be compatible with the unmodified Tor,
which is also the reason we piggyback on existing messages,
rather than adding more types of messages to the circuit
creation protocol. This way, if a middle node that is not
running Shaffler receives a cell with a delay policy, it will
simply ignore it and everything will proceed normally.

Regarding the delay policy, we define it as composed of
four values: the delay mode, which specifies the modulation
function to be used; the parameters to be used in the
specified function; and the maximum value allowed for
a delay, to force any delay higher than that value to be
discarded and replaced. The delay mode is the only one of
these values that is restricted, as it must correspond to: the
“None” mode, which deactivates delays, the “Auto” mode,
which tells the middle node to modulate traffic according to
its own policy, or any of the modulation function modes.

The delay policy and the option to enforce it are both
implemented in the form of torrc [17] options. Additionally,
each OR is also provided with options to configure its own
delay policy, which will be used when a client requests the
“Auto” mode.

D. Creating Cover Traffic

As described in Section IV, all components responsible
for Shaffler’s cover traffic generation were conceived to run
on the user’s system. Since the goal is to ensure all Tor traffic
is directed towards the same guard node, all components rely
on the same underlying Tor process to access the network.
However, using the same Tor process in its default configu-
ration is not sufficient to ensure all circuits share the same
guard. Therefore, in Shaffler’s implementation, the torrc
file was edited so that the options UseEntryGuards,
NumEntryGuards and NumPrimaryGuards were set
to 1. It is relevant to note that, although it is possible to
achieve the same outcome by choosing a specific guard
node in the EntryNode option, this approach could be
problematic if the chosen node was unavailable.

The user’s “regular client” can be any application just as
long as it uses the aforementioned Tor process as a SOCKS

proxy. In order to avoid DNS leaks this application should be
configured to use Tor as its DNS resolver as well. Shaffler’s
prototype used the Tor Browser as the “regular client”. In
order to use the system’s custom Tor process, the browser’s
default profile was configured through preferences to: (i)
prevent the Tor Browser from attempting to start its own Tor
process (the default behaviour), (ii) specify the control and
SOCKS ports used by the custom Tor process. Additionally,
when using the Tor Browser, all DNS queries are made
through Tor by default and no further configuration was
needed in that regard.
Cover OS: The cover OS implementation consists of a
Web Server Gateway Interface (WSGI) application written
in Python using the Flask framework. It runs on a Gunicorn
WSGI server and uses Nginx as a reverse proxy. To setup
the OS, the torrc file was further changed to include
the HiddenServiceDir and HiddenServicePort
settings, making sure to redirect traffic to the Nginx port.

The Flask application can run in different modes and
exposes a set of endpoints whose response is adjusted
accordingly. The mode can be changed in a dedicated
configuration file that allows for further customization. Four
modes were created: (i) Constant, where the OS responds
with a predetermined or requested amount of randomly
generated bytes; (ii) Single page, where the OS responds
by serving a predetermined or requested web page, which
can be identified by name; (iii) Multiple pages, where
the OS serves a web page from a selection of preloaded
templates; (iv) Dynamic, where the OS can respond with
either randomly generated bytes or a web page.

This implementation results in an OS whose behavior
can be easily customized. One can choose to run a flexible
configuration, serving a large amount of different web pages,
with a wide range of fingerprints, a more rigid configuration
where responses consist of a fixed amount of random bytes
or something in between.
Cover client: The cover client was implemented as a
Python script that periodically sends requests to the OS. Its
behavior is heavily dependent on the OS configuration since
both the available endpoints and the responses themselves

6

...
10300

10001

...
10300

10001

Tor Network
(0.5%)

Client 1

Client 300

...

Server 1

Server 100

...

Ports

Figure 4. Simulation configuration used for the dataset collection.

vary with it. The script relies on either the requests or
requests_html python libraries, depending on whether
the expected response is a collection of bytes or a web
page that needs to be rendered. As is the case with every
other component of the cover traffic infrastructure, the cover
client accesses the Tor network via the custom Tor process
mentioned above. Doing so implied configuring the cover
client to use said process both as a SOCKS proxy and DNS
resolver, making sure to not cache any of the OS’s responses.

To orchestrate all cover traffic components, a manager was
implemented using Go. The main function of the manager
is to spawn and monitor all the components, ensuring that
the “regular client” does not send traffic to the network
unless adequate cover is being generated. To this extent,
the components are spawned in a specific order. First is the
Tor process, followed by the OS (both the Gunicorn server
and the Nginx reverse proxy), the cover client and, only if
everything launched successfully, the “regular client”. For
each component, the manager launches a goroutine tasked
with spawning the respective process. Once the process is
correctly launched, the same goroutine signals main and
proceeds to enter a monitoring mode. If, at any point, one of
the processes crashes, its goroutine signals main to trigger
a recovery sequence or a full restart of the system.

VI. EVALUATION

This section describes our evaluation methodology and
presents the results of various experiments performed to
assess Shaffler’s effectiveness and performance.

A. Methodology

Correlation Metrics: By default, the DeepCoFFEA attack
outputs the metrics True Positive Rate (TPR), False Positive
Rate (FPR) and Bayesian Detection Rate (BDR). However,
these metrics are not very practical to compare results ob-
tained with different configurations of Shaffler. The difficulty
stems from the nature of the relationship between these
metrics; for example, a higher TPR comes at the cost of
a higher FPR and lower BDR.

Therefore, we require metrics that allow us to pinpoint
the similarity threshold where these trade-offs are optimized,
allowing a fair result comparison. As such, we calculated
and used F1-score, which is a compound metric that can
be calculated from true and false positives and negatives
of a classification problem’s outcome. Additionally, we also
decided to use P4 [18], which was designed to address

F1-score’s tendency to overlook true and false negatives,
providing a more balanced assessment of the effectiveness
of our defenses.
Performance Metrics: By default, simulations by
tornettools use 100 perfclients to perform several
performance measurements. Among all metrics provided by
tornettools, we found the key metrics for evaluating
Shaffler configurations performance to be Transfer Times
(for data sizes N ∈ {50KiB, 1MiB, 5MiB}) and Error
Rate (percentage of failed data streams, for example, due
to timeouts).
Dataset Collection: To evaluate the impact of the Shaffler
on the DeepCoFFEA attack’s traffic correlation ability, we
required compatible datasets. As previously mentioned, to
generate those datasets, we employed the Shadow network
simulator to mimic our modified version of Tor and used
tornettools to create a realistic network configuration,
modified to resemble the dataset collection method described
by Oh et al. [16]. Due to resource constraints, we simulated
networks at 0.5% of the real Tor network’s size.

The datasets are composed of pairs of files, capturing a
flow at the ingress and egress of the circuit, specifically, the
timing and size details of each packet.

To collect these datasets, it was necessary to overcome
two main challenges. The first of those challenges was
how to capture the packet details within the simulation.
We used a Shadow configuration for simulated hosts to
capture packets in PCAP format, retaining essential header
information while discarding unnecessary payload data. We
limited captures to 24 bytes per packet using Shadow’s
options, crucial for manageable dataset sizes. Unlike the
method described by Oh et al. [16], we directly captured
egress flows on the server hosts, eliminating the need for a
proxy server due to our server monitoring capabilities.

The second challenge was how to efficiently collect flows
while keeping track of the pairings of captures. Simulating
and capturing each flow of the dataset at a time would be
inefficient, while capturing multiple flows simultaneously
risks losing track of the flow pairings. To overcome this,
we designed a method consisting of running N clients, each
assigned a unique identifier i. Servers were configured to
listen on N ports, one for each client. Clients determined the
destination port for their flows using the formula: portci =
10000 + i, where i ∈ [1, N].

This setup, shown in Figure 4, with N = 300, collected
around 23000 flow pairs for 2 hours, with each pair spanning
1 minute. The 2-hour simulation included a 5-minute one-
time setup and 30-second intervals between generated client
flows.

After running the simulation, we developed a Python [19]
script using dpkt [20] to extract and parse the packet cap-
tures, creating the dataset in the format used by DeepCoF-
FEA. The script has two phases: staging, where flow details
are organized into a sorted JSON file, and parsing, where
timestamps and sizes are added to the corresponding flow’s
output file. The output format consists of two directories:

7

Similarity Thresholds

M
et

ric
s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

TPR FPR BDR F1-score P4

Max(F1-score) = 98.73%;Max(P4) = 99.36%

Figure 5. Graph showing the results of the DeepCoFFEA attack for varying
similarity thresholds, when using the “Tor vanilla” dataset.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
exit Transfer Time (s): Bytes=51200

0.0

0.9

0.99

0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94
0.95

0.96

0.97

0.98

CD
F

(ta
il

lo
g

sc
al

e)

Vanilla
Normal#20#10
Normal#20#5
Normal#30#10
Normal#30#5

0 10 20 30 40
exit Transfer Time (s): Bytes=1048576

0.0

0.9

0.99

0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94
0.95

0.96

0.97

0.98

CD
F

(ta
il

lo
g

sc
al

e)

Vanilla
Normal#20#10
Normal#20#5

Figure 6. Transfer Times of 50KiB and 1MiB, obtained for the tested
configurations of the Normal distribution.

inflow for ingress flows and outflow for egress flows. Each
flow pair is represented by two files with matching names,
one in each directory.

B. Tor Vanilla Results
To evaluate the effects of traffic modulation on the Deep-

CoFFEA attack accuracy, we compared results with Tor
vanilla (version 0.4.7.13) using the dataset collection method
described above. Figure 5 shows a plot of TPR, FPR, and
BDR for different similarity thresholds.

Our dataset produced more accurate DeepCoFFEA attack
results (e.g., TPR ≈ 99% and BDR ≈ 95% for a certain
threshold) comparing to Oh et al. [16] with a real traffic
dataset. This shows a difference of approximately 19% over
the highest TPR obtained by Oh et al. simultaneously with
BDR ≥ 95%, which is approximately 80%. This increased
accuracy is likely due to our simulated network collection
method. Although not optimal, it serves as a baseline for
comparison.

C. Traffic Modulation Results

Mean and Standard Deviation of Delays: We experi-
mented with varying mean and Standard Deviation (SD)
values to assess their impact on the effectiveness of the
DeepCoFFEA attack and system performance.

Larger mean delays were found to decrease the accuracy
of the attack, with a mere 10 ms increase in mean delay

size, from 20 ms to 30 ms, reducing the maximum F1-
score by ≈ 14% and P4 by ≈ 8%. We also found that
the SD had minimal and inconsistent impact on accuracy,
with results fluctuating in both directions by less than 1%.
Additionally, as expected, higher mean delays led to longer
transfer times, with the previously mentioned increase in
mean delay size resulting in a 33% increase in the transfer
time of 50KB. Additionally, as shown in Figure 6, we found
that, comparing the usage of Tor vanilla with the usage of
a modulation function with 20 ms of mean delay size, there
is an increase of ≈ 40s in the transfer time of 1MiB of
data. The SD, however, seemed to have negligible effects on
performance. Although these performance results may seem
unacceptable when considered in isolation, they must be
interpreted as a trade-off for the reduction in attack accuracy
achieved.

Attack Parameters: The DeepCoFFEA attack has three
main parameters: the number of decision windows to use, the
size in seconds of each window, and a value specifying how
many seconds each window overlaps each other. The accu-
racy results shown previously were obtained with the default
configuration: 11 windows that span 5 seconds each, with
overlaps of 3 seconds. Since the usage of traffic modulation
essentially expands a flow over time, increasing the distance
in time between a packet’s entry and its exit from the circuit,
we hypothesized that larger windows of decision would
be more effective. As such, to verify our hypothesis, we
trained and tested DeepCoFFEA with different parameters
on multiple datasets.

We found that while, for the Tor Vanilla dataset increasing
the window size and overlap parameters to 7s and 4s,
respectively, reduced the accuracy of the attack slightly,
for all other datasets where traffic modulation was used,
the accuracy of the attack instead increased significantly.
Specifically, the Tor Vanilla results revealed a decrease in
maximum F1-score of 6.42% and in P4 of 3.36%, while the
Normal(µ = 30, σ = 10) revealed an increase in maximum
F1-score of 10.29% and in P4 of 6.11%. However, if the
increase in these parameters is too high, the accuracy results
start becoming worse again. The results we obtained suggest
that the optimal parameters of the attack, when using most
modulation functions, may be close to 7s and 4s, for the
window size and overlap parameters, respectively.

Other Modulation Functions: We examined diverse mod-
ulation functions, including the Uniform, Normal, Poisson,
Exponential, and Lognormal functions. The results of the
various functions tested can be seen in Table II.

Our analyzes revealed that the mean delay size remained
as the primary factor influencing attack accuracy, with modu-
lation functions with similar means yielding similar accuracy
results. Additionally, performance consistency was observed
among modulation functions with the same mean delay.
Interestingly, we also found a pattern where wider delay
value ranges seemed to reduce the attack accuracy, with the
main example of this being the Exponential function, which
is able to generate delays of up to 100ms.

8

Modulation Function Max F1-score Max P4

V anilla 98.73% 99.36%
Uniform(min = 0,max = 40) 91.98% 95.82%
Normal(µ = 20, σ = 5) 92.37% 96.03%
Poisson(λ = 20) 93.17% 96.46%
Exponential(λ = 0.05) 88.11% 93.67%
Lognormal(µ = 2.875, σ = 0.5) 91.73% 95.68%

Table II
MAXIMUM F1-SCORE AND P4 VALUES OBTAINED FOR MODULATION

FUNCTIONS CONFIGURED TO RESULT IN A MEAN DELAY OF 20ms.

D. Cover Traffic Results

Amount of Traffic per Request: We tested cover traffic
amounts (10KB, 100KB, and 1MB every 15 seconds) to
analyze their effects on the DeepCoFFEA attack accuracy.
As expected, the results show that the more cover traffic is
generated, the less accurate the attack becomes. However, it
is interesting to note how small of a difference each increase
in the amount of cover traffic makes, when compared with
the difference between the results of Tor Vanilla and the
lowest amount of cover traffic, which reveal a massive drop
of 22.32% in maximum F1-score and of 12.99% in P4, re-
spectively. Specifically, when increasing the amount of cover
traffic by 10×, from 100KB to 10MB, the maximum F1-
score and P4 reduce by 3.85% and 2.61%, respectively. This
suggests that, while the amount of cover traffic generated
does affect the accuracy of the attack, it quickly reaches a
point of diminishing returns.

Additionally, these amounts of cover traffic tested have
a negligible impact on performance, as the transfer times
are very similar to each other and to those obtained with
the Vanilla simulation. This is likely due to the total rate
of traffic generated by the clients being very low, ranging
from 0.67KiB/s (10KiB/15s) to 66.67KiB/s (1MiB/15s),
which is significantly lower than the rate of traffic usually
generated by web browsing or video streaming, for example.

Period of Requests: We also experimented with the period
of requests parameter, which mainly affects the frequency of
occurrence of peaks in traffic sent by the OS. We performed
experiments for periods of 15, 10, and 5 seconds, all with
requests of 100KB. The results showed that decreasing the
period significantly reduced the accuracy of the attack. For
example, with the reduction in period from 15s to 10s
resulting in a drop in maximum F1-score and P4 of 2.25%
and 1.51%, respectively. However, curiously, the 5-second
period provided the worst results. This is due to the use
of a single thread to generate cover traffic requests, which
results in requests constantly being timed out before being
able to transfer any significant amount of cover traffic. These
timeouts occur because they are configured to be equal to
the period of requests, as it is not possible to send a new
request without aborting the previous one.

Concurrent Requests: A possible solution for the limitation
of the 5-second period is to separate the timeout value of

Cover
Configuration

Modulation
Function

Max
F1-score

Max
P4

None Lognormal(µ = 2, σ = 0.5) 96.98% 98.47%
500KB per 15s, 2 threads None 59.28% 74.43%
500KB per 15s, 2 threads Lognormal(µ = 2, σ = 0.5) 20.89% 34.55%
500KB per 15s, 2 threads Lognormal(µ = 1.5, σ = 0.5) 29.15% 45.14%
250KB per 15s, 2 threads Lognormal(µ = 1.5, σ = 0.5) 39.05% 56.16%

Table III
MAXIMUM F1-SCORE AND P4 VALUES OBTAINED FOR EACH

TECHNIQUE INDEPENDENTLY AND WHEN USING BOTH TECHNIQUES
SIMULTANEOUSLY.

the requests from the period of the requests, allowing the
timeout to be higher than the period. One way of doing this
is through the usage of threads that are distributed in time,
such that the requests are not made at the same time but may
overlap. We tested a configuration of 2 threads generating
500KB every 15s, with a time gap of 7.5s between requests
across both threads.

Comparing these results to the 1MB every 15-second
single-threaded setup, the accuracy of the attack is signifi-
cantly reduced. Specifically, this approach reduced the max-
imum F1-score by 10.7% and P4 by 7.9%. By distributing
cover traffic more evenly, it creates fewer moments with no
cover traffic being generated and where an attacker may be
able to observe and learn real traffic patterns.

E. Full System Results

In this section, we discuss the experimental results of
Shaffler, using traffic modulation and cover traffic.

In Section VI-C, we hypothesized that preserving the
order of packets in traffic modulation allowed the Deep-
CoFFEA attack to identify patterns easily by combining
volume analysis with timing analysis. While the obvious
solution would be to shuffle the packets, our idea was to
instead use cover traffic to disrupt the patterns identified
by shuffling that traffic together with the protected flow at
the circuit’s ingress. Analogously, we hypothesized that the
results obtained through the usage of cover traffic would
also be improved by the usage of traffic modulation, as the
delays added would disrupt the adversary’s ability to match
packets observed at the ingress and egress of the circuit,
based on the expected time between observations.

To test these hypotheses, we tested both techniques in-
dependently and together using the same parameters. For
this purpose and based on our hypothesis that small delays
would be enough to significantly improve traffic correlation
protection, we selected a modulation function with low mean
delay size, and consequently a low impact on performance,
Lognormal(µ = 2, σ = 0.5). Regarding the cover traffic
configuration, we used the same configuration that resulted
in the lowest accuracy results in Section VI-D: 2 threads
requesting 500KB every 15s each.

Table III shows the results obtained by running the
DeepCoFFEA attack with its default parameters on the three
created datasets, one using traffic modulation, another using
cover traffic, and the last one using both techniques.

9

Complementary techniques: By comparing the results of
the three experiments, we observed that both techniques
seem to complement each other, as the results obtained
with both techniques are significantly better than the results
where each technique was used independently, achieving
an impressive maximum F1-score of 20.89% and P4 of
34.55%. Furthermore, the effectiveness of this approach is
highlighted by the impact even small delays (as low as 7
milliseconds) have on the accuracy of the attack, suggesting
that our hypothesis might be correct and that small delays
seem to be enough to disrupt timing analysis.

Although the results obtained reveal an outstanding pro-
tection against traffic correlation, some might consider it
more than necessary, especially due to the significant impact
on performance. As such, we decided to also test altering
the parameters of the Lognormal function to reduce the
mean delay size. The parameters chosen were µ = 1.5 and
σ = 0.5, which result in a reduction in the mean delay
size from 7 to 4.5 milliseconds, compared to the parameters
previously used. Additionally, we also attempted to reduce
the amount of cover traffic generated, from 500KB each 7.5
seconds to 250KB each 7.5 seconds.
Adjustability: The results of these experiments, which can
also be seen in Table III, show us that there is room in
the Shaffler configuration parameters to adjust the trade-
off between protection and performance. Additionally, the
similar reduction in protection observed when reducing
either the mean delay size or the amount of cover traffic
generated suggests that users of the system may choose
which technique to reduce the strength of, based on their
needs or capabilities. An example of this is a user that has
a limited amount of bandwidth available who may choose
to reduce the amount of cover traffic generated, instead of
reducing the mean delay size, while another user that has
more available bandwidth may choose to reduce the mean
delay size instead, to reduce their latency.

VII. CONCLUSIONS

Our study focuses on countering traffic correlation attacks
in the Tor network, a threat to user anonymity. We introduce
Shaffler, employing traffic modulation and cover traffic gen-
eration techniques. Implemented in a Tor version compatible
with the existing infrastructure and with configurable param-
eters, Shaffler significantly reduces the effectiveness of the
attack. However, this improvement in security comes with a
performance cost. We also explored various statistical dis-
tributions for traffic modulation and cover traffic generation,
revealing their complementary benefits. Shaffler allows users
to balance protection and performance, offering a solution
against traffic correlation attacks.

VIII. FUTURE WORK

In the present work, we developed Shaffler. Moving for-
ward, there are areas for improvement and further research.
Future work includes overcoming the limited time resolution
of delays imposed by timers, providing user-friendly config-
uration through automated parameter adjustments based on

predefined modes, adapting system parameters to real-time
network conditions by monitoring the latency of loop traffic,
and testing Shaffler against other traffic correlation attacks
beyond DeepCoFFEA. Furthermore, while our current eval-
uation relied on simulations, validating our results through
emulation experiments is a crucial step.

ACKNOWLEDGMENTS

This work was supported by national funds through
IAPMEI via the SmartRetail project (ref. C6632206063-
00466847). Parts of this work have been performed in
collaboration with other members of the Distributed Sys-
tems Group at INESC-ID, namely, Afonso Carvalho, Diogo
Barradas and Kevin Gallagher.

REFERENCES
[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-Generation

onion router,” in 13th USENIX Security Symposium (USENIX Security 04).
San Diego, CA: USENIX Association, Aug 2004. [Online]. Available:
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-secon
d-generation-onion-router

[2] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira, “Measuring and
mitigating as-level adversaries against tor,” in Network and Distributed System
Security Symposium (NDSS), Feb 2016.

[3] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get routed:
Traffic correlation on tor by realistic adversaries,” in ACM SIGSAC Conference
on Computer and Communications Security, Nov 2013.

[4] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in IEEE
Symposium on Security and Privacy, May 2005.

[5] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix networks:
Attacks and defenses,” in European Symposium on Research in Computer
Security, Jan 2006.

[6] M. Wright, M. Adler, B. N. Levine, and C. Shields, “Defending anonymous
communications against passive logging attacks,” in IEEE Symposium on Secu-
rity and Privacy, May 2003.

[7] M. Akhoondi, C. Yu, and H. V. Madhyastha, “Lastor: A low-latency as-aware
tor client,” in IEEE Symposium on Security and Privacy, May 2012.

[8] M. Edman and P. Syverson, “As-awareness in tor path selection,” in ACM
SIGSAC Conference on Computer and Communications Security, Nov 2009.

[9] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency - choose two,” in 2018 IEEE
Symposium on Security and Privacy (SP), 2018, pp. 108–126.

[10] R. Jansen and N. Hopper, “Shadow: Running tor in a box for accurate
and efficient experimentation,” in Network and Distributed System Security
Symposium (NDSS). Internet Society, Feb 2012.

[11] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela: Scalable
private messaging resistant to traffic analysis,” in Proceedings of the 25th
Symposium on Operating Systems Principles, ser. SOSP ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 137–152. [Online].
Available: https://doi.org/10.1145/2815400.2815417

[12] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom: Scalable
anonymity resistant to traffic analysis,” CoRR, vol. abs/1612.07841, 2016.
[Online]. Available: http://arxiv.org/abs/1612.07841

[13] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The loopix
anonymity system,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug 2017. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presenta
tion/piotrowska

[14] C. Diaz, H. Halpin, and A. Kiayias, “The nym network,” 2021.
[15] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow correlation

attacks on tor using deep learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3243734.3243824

[16] S. E. Oh, T. Yang, N. Mathews, J. K. Holland, M. S. Rahman, N. Hopper, and
M. Wright, “Deepcoffea: Improved flow correlation attacks on tor via metric
learning and amplification,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022.

[17] T. Project, “torrc(5),” https://manpages.debian.org/testing/tor/torrc.5.en.html,
Jan 2023, accessed: 2023-08-03.

[18] M. Sitarz, “Extending f1 metric, probabilistic approach,” 2022.
[19] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009.
[20] D. Song, “dpkt,” https://dpkt.readthedocs.io/en/latest/, Aug 2022, accessed:

2023-08-03.

10

