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Resumo

O Tor é uma rede de anonimidade de baixa latência muito utilizada que permite aos utilizadores nave-

gar na Internet de forma segura. Infelizmente, é conhecido que a rede Tor é vulnerável a ataques de

confirmação de tráfego, isto é, ataques em que um adversário pode observar o fluxo de tráfego tanto

para dentro quanto para fora da rede Tor. Estes ataques funcionam ao contar o tempo entre pacotes

e ao analisar os seus tamanhos, para conseguir correlacionar um fluxo que entra na rede Tor com um

fluxo que sai da mesma. Assim, o adversário pode comprometer a anonimidade do tráfego entre um

cliente e um servidor. Abordagens recentes para solucionar este problema sugerem técnicas como

mistura de tráfego real com tráfego falso, e atraso de pacotes por perı́odos de tempo escolhidos a partir

de uma distribuição estatı́stica especı́fica, a fim de combater os ataques de confirmação de tráfego.

No entanto, a maioria das soluções propostas requerem a implementação de novos sistemas de anon-

imidade, o que pode ser desafiante, tendo em conta o tamanho e adoção da rede Tor. Neste projeto,

estudamos a viabilidade de integrar a modulação de tráfego e a mistura de tráfego de cobertura em

loop no Tor. Desenvolvemos também um sistema, chamado Shaffler, e realizamos uma análise exten-

siva para determinar se essas técnicas ajudam a defender contra ataques de confirmação de tráfego

conhecidos e, se sim, quais as penalizações de desempenho envolvidas.

Palavras-chave: Tor, Anonimidade, Ataques de correlação de tráfego, Mistura de tráfego,

Modulação de tráfego

vii



viii



Abstract

Tor is a popular low-latency anonymity network that allows users to surf the Internet privately. Unfortu-

nately, the Tor network is known to be vulnerable to traffic confirmation attacks, i.e. attacks where an

adversary can observe a traffic flow both into and out of the Tor network. These attacks work by counting

the times between packets and looking at their sizes to correlate one flow entering the Tor network with

a flow exiting the Tor network. Thus, the adversary can compromise the anonymity of traffic between a

client and a server. Recent approaches to anonymity have suggested techniques such as mixing real

traffic with covert traffic and delaying packets for an amount of time chosen from a specific statistical

distribution, in order to frustrate traffic confirmation attacks. However, most of the proposed solutions to

this problem require the deployment of new anonymity systems, which may be a challenge, considering

the current size and adoption of the Tor network. In this project, we study the feasibility of integrating

traffic modulation and loop cover traffic mixing into Tor. We develop a system, called Shaffler, and per-

form an extensive analysis of it to determine whether these techniques help defend against known traffic

confirmation attacks, and if so, what performance penalties are incurred.

Keywords: Tor, Anonymity, Traffic correlation attacks, Traffic mixing, Traffic modulation
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Chapter 1

Introduction

1.1 Motivation

Although the Internet has become an integral aspect of people’s lives, it has also posed a significant

challenge for Internet users concerning their privacy and anonymity. This state of affairs is due to the

traditional network protocols for Internet communications that rely on strong traffic-identifying metadata,

such as source and destination IP addresses. IP addresses are essential to enable communication

parties to establish TCP/IP connections and respond to each other’s messages. As a result, they consti-

tute strong identifiers that enable network observers, such as Internet Service Providers (ISPs), to trace

communications to a sender and a receiver, making it difficult to remain anonymous on the Internet.

Thankfully, there are systems capable of providing users with better anonymity. One of those sys-

tems, and the most prominent one, is the Tor network [1]. When using Tor, a sender’s traffic passes

through at least three “onion routers” before reaching the recipient. Traffic created by the sender is en-

crypted sequentially, with all secret keys negotiated between the sender and each node of the circuit. As

this traffic passes through the circuit, each node decrypts it with its key, revealing the address of the next

node. With this mechanism, only the sender is aware of both its own and the recipient’s IP addresses.

However, while the Tor onion routing protocols provide strong anonymity properties, there remain

some more complex methods to identify the parties involved in a communication. Traffic correlation

attacks [1] are one of these methods, which consists of attempting to correlate patterns observed in

traffic that is sent by a user to the Tor network with patterns of traffic observed leaving the Tor network

and arriving at a remote host. Dingledine et al. [1] describe these attacks as end-to-end timing corre-

lation, when the attack is performed through observation of timing patterns, and as end-to-end volume

correlation when an attacker attempts to correlate flows through the observed volume of packets.

For a long time, launching these attacks in practice has been considered to be difficult given the

geographical dispersion of Tor circuits’ routes and the subsequent difficulty for a single ISP to intercept

the traffic at both communication endpoints of a Tor circuit. Today, however, traffic correlation attacks

are becoming increasingly realistic threats to the anonymity of Tor users, as they can be launched at a

large scale by a coalition of ISPs approximating state-level adversaries. Nithyanand et al. [2] presented
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an empirical study where they discovered that up to 40% of all Tor traffic is vulnerable to attacks by

traffic correlation from network-level attackers; 42% from Autonomous Systems (ASes) that may collude

with each other and 85% from state-level adversaries. Users in some countries (China and Iran) are

particularly affected, since 95% of all possible circuits are vulnerable to traffic correlation. A second

study by Johnson et al. [3], shows that 80% of all users can be deanonymized when faced with a relay-

level attacker. Surprisingly, most users can be successfully deanonymized within three months by an

AS-level attacker. Colluding ASes can correctly correlate users in 90× less time. When targeting a

specific web user, colluding ASes can effectively deanonymize them in a single day.

Understanding how these risks are becoming increasingly realistic, the research community has

been working on new defenses to protect Tor users against such attacks [2, 4–8]. However, strong de-

fenses for low-latency anonymity networks cannot be achieved without a cost. In a highly cited paper,

Das et al. [9] describe this problem as the anonymity trilemma, stating that it is not possible to simul-

taneously achieve strong anonymity, low latency, and low resource usage. As such, to provide strong

protection against traffic correlation attacks, one must sacrifice either latency or resource usage. To this

end, constrained by the fundamental limitations formalized by Das et al. [9], this work aims to explore the

effectiveness of two defensive techniques in enhancing Tor anonymity properties: (i) traffic modulation,

which mainly sacrifices latency, and (ii) cover traffic generation, which mainly sacrifices resource usage.

1.2 Objectives

Our goal is to develop a system, that can significantly decrease the effectiveness of traffic correlation

attacks performed to the Tor anonymity network. It is our objective to do this in a way that preserves

compatibility with vanilla Tor, by ensuring standard Tor functionality between entities running our version

of Tor and entities running vanilla Tor. Regarding defenses, our design will focus on two principles: (i)

the flows in the network should be as indistinguishable from each other as possible in terms of timing

patterns, and (ii) the higher the number of flows passing through an extremity of the circuit, the better.

Both of these principles serve the common purpose of making it difficult for an attacker to identify which

flow at one end of the circuit corresponds to another flow observed at the other end. By making flows

more indistinguishable from each other, we increase the adversary’s uncertainty when identifying pairs

of flows, since the differences between the various candidates become smaller. Similarly, by increasing

the number of flows at one end of the circuit, we also increase the uncertainty of the adversary, as the

number of possibilities seen by them increases.

Regarding the first principle, our approach is to modulate traffic in the middle of a circuit, so that

the patterns of traffic are modified between the two observation points used by an adversary to perform

traffic correlation, i.e. the ingress and egress of the circuit. In this scenario, traffic modulation consists of

using a statistical distribution to select and apply delays to traffic, to modify its timing patterns. However,

it is not trivial to determine which distribution is the best for our purposes, as we have to evaluate not only

the effectiveness in thwarting attacks, but also the performance impact introduced by each distribution.

Therefore, it is also our objective to test multiple distributions and learn which one provides the most

2



Tor Client
Guard Node Middle Node Exit Node Web Server

Tor Network
Modulation

Cover Traffic Loop

Figure 1.1: High-level overview of the Shaffler system showcasing its central techniques: (i) traffic
modulation is implemented by the middle node, and (ii) cover traffic generation by the Tor client via a
traffic loop between the client and a co-located onion service.

indistinguishability between flows and the least performance impact.

Regarding the second principle, we will study the feasibility and effectiveness of the cover traffic

generation technique. This technique consists in having a client send cover traffic to an Onion Service

(OS) hosted and managed by itself, to increase the number of flows passing through a specific node

of the network. Our idea is to use the OS connection protocol to allow a client to connect to itself

through the Tor network without requiring Network Address Translation (NAT) to be configured. With

such a connection set up, it is possible to send cover traffic through the same Tor process as real traffic,

increasing the amount of traffic going through the guard node, thus increasing confusion. Additionally,

by using a self-hosted service, we are able to avoid affecting the performance of real services with our

fake traffic.

Figure 1.1 presents an overview of the functioning of both these techniques, traffic modulation, and

cover traffic generation. We can see, in green, the middle node of the circuit modulating the traffic, which

alters the timing patterns of the traffic, represented by the shifted positions of the blue rectangles that

symbolize packets. The path of the cover traffic created by the Tor client is highlighted in red. It goes

through the guard node, is forwarded by multiple Onion Relays (ORs), and then returns to the guard

node, forming what we call the cover traffic loop. With both of these mechanisms in place, we address

both types of correlation that an attacker can perform at the endpoints of the circuit. This includes

timing correlation, which is made more difficult by the traffic patterns being modified in the middle of

the circuit, and volume correlation, which is made more challenging by the increased volume of traffic

passing through the entry point of the circuit. These techniques will be implemented in the system we

will develop, called Shaffler.
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1.3 Contributions

This thesis presents the design, implementation, and evaluation of Shaffler, a system aimed at thwarting

traffic correlation attacks on Tor by utilizing traffic modulation and cover traffic generation techniques.

Specifically, this thesis makes the following contributions:

• Design of a mechanism that allows traffic modulation to be configured by a client and performed

by a middle node in, that is fully compatible with the current Tor infrastructure.

• Design of a method for clients to generate cover traffic to add noise to the ingress of a circuit with

minimal impact on the network, using an OS hosted and managed by the client itself.

• Implementation of a Tor version that supports our traffic modulation design, without requiring any

large changes to be made, and thus allowing for a gradual deployment.

• Implementation of our cover traffic generation design in a way that can be easily used by clients

by running a single component, that can be configured through various options provided.

• Evaluates the trade-offs of using different statistical distributions, with different parameters, for

traffic modulation, in terms of the level of indistinguishability between flows and the performance

impact on the network.

• Evaluates the effectiveness of the cover traffic generation technique, using different configurations,

in terms of the level of noise added to the ingress of a circuit and the performance impact on the

network.

1.4 Thesis Outline

The remainder of this document is organized as follows. Chapter 2 provides an introduction to the Tor

network and its mechanisms, as well as a description of different types of attack targeting anonymity

networks and defenses for such attacks, with a special focus on traffic correlation attacks targeting Tor.

Chapter 2 also describes other anonymity networks and their mechanisms of defense against such

attacks. Chapter 3 describes the design of Shaffler. Chapter 4 describes the details of implementation

of the Shaffler prototype. Chapter 5 presents the results of the experimental evaluation. Chapter 6

concludes the document, highlighting the main findings and pointing possible directions for future work.
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Chapter 2

Background and Related Work

In this chapter, we start by providing an overview of Tor, explaining how it provides anonymity and how

that anonymity can be broken by known attacks. We then cover related work, starting by providing an

overview of the known techniques used in traffic correlation attacks, as well as various defenses studied.

Finally, we describe and discuss various defensive mechanisms used by other anonymity systems that

are resistant to traffic correlation.

2.1 Background on the Tor Anonymity Network

Tor is an anonymity system that routes users’ traffic through a series of routers, based on a technique

known as onion encryption which provides users with the ability to connect to a server without allowing

any entity to learn of their connection.

When a client wants to connect to a server through the Tor network, a circuit is created (see Fig-

ure 2.1). This circuit is usually made up of three nodes: the entry node that connects directly to the

client, the middle node, and the exit node that connects directly to the server.

All data sent through that circuit is then encrypted three times, with each shared key previously

negotiated between the client and each node, and in reverse order of the circuit. In this way, by having

each node remove one layer of encryption, it is ensured that any data sent through the circuit changes

form at each node, making it hard for an observer to trivially identify its path. Additionally, it ensures that

only the exit node is able to learn the address of the server being connected to, so that it can forward

the data to it.

Onion services (previously known as hidden services) are a way for users to publish web services

that are only accessible through the Tor network as their addresses are not publicized on Domain Name

System (DNS) servers. Instead, during setup, an OS nominates a selection of Tor nodes as its intro-

duction points and creates a Tor circuit to each of them. It then creates a “service descriptor”, which

includes the public key of the service for authentication purposes, as well as the list of all the introduction

points of that service. This descriptor is published in a distributed database on the Tor network called

OS directories, along with the service address, which will serve as the key to its entry in the database.

5



Web Server
Tor Client

Guard Node Exit Node

Middle Node

Tor Network

Figure 2.1: Example of a Tor circuit used by a client to access a Web server anonymously.

These service addresses are special addresses that end in “.onion”, and are usually long and difficult to

memorize. These addresses are then manually shared with clients through a variety of means.

When a client wants to connect to an OS, he must first select a node as the Rendezvous Point (RP),

establish a circuit to it, and send a request to connect to a specific address. The RP must then query

the OS directories, select an introduction point from the received list, and send an introduction request

to it. Upon receiving this request, the service connects to the RP through another Tor circuit, and from

there onward all communications between the client and the service pass through that RP.

2.2 Attacks against the Tor Network

One of the most powerful classes of attacks aimed at deanonymizing Tor circuits are correlation attacks.

A correlation attack is an end-to-end attack in which an adversary searches for a correlation between two

flows captured at the ingress and egress of a circuit. Since an entry relay connects directly to a client

and an exit relay connects directly to a server, an attacker can conclude that a client is accessing a

certain server if they find that two observed flows are correlated. State-level adversaries are particularly

well positioned to launch such attacks due to their privileged control over a country’s network.

We briefly describe some of the most effective correlation attacks and supporting techniques known

today, as well as defensive mechanisms, studied and proposed by several authors that could possibly

be integrated into Tor. However, many of the known defense mechanisms suffer from causing some

kind of impact on the performance of the system. This concern for the user experience should not be

considered to be unrelated to security, as anonymity systems rely on having large anonymity sets to

hinder an attacker’s ability to identify the senders of observed traffic [10]. If the usability of an anonymity

system is not satisfactory to users, it will result in a low adoption, which in turn will impact the privacy

that the system can provide.
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2.2.1 Timing attacks

These are end-to-end active attacks in which an attacker attempts to determine the endpoints of a circuit

by correlating the time it takes for an identifiable flow generated by the attacker to travel from the entry

to the exit relay. Chakravarty et al. [11] employ single-end bandwidth estimation to deanonymize the

source of a given Tor connection. The attacker places probe servers alongside the egress and ingress

routers at the boundary of ASes. Assuming that the client will connect to a server colluding with the

adversary, the server will then send traffic along with a pattern that can be detected by the attacker’s

probing nodes. In this way, the attacker can discover the AS of the client and may further escalate the

attack to pinpoint the actual location of the client.

Pries et al. [12] presented a different timing attack based on the disruption of the AES-CTR counter

used to encrypt Tor cells. This attack requires that the entry and exit nodes are controlled by an attacker

and works by duplicating a cell in the entry node, which causes a decryption error at the exit node. An

attacker can correlate the time of cell transmission with the time of the decryption error to ensure that

the error was caused by the cell duplication and ultimately identify the source of the connection.

Murdoch and Danezis [4] propose some defensive strategies to mitigate timing attacks. One strategy

designated by perfect interference state that the output streams should all have the same shape, e.g.,

using threshold mix batching. However, Tor does not employ threshold mix batching, which relies on

waiting for several streams and then flushing them all at once. Such a technique would increase the

latency, defeating the low-latency characteristic of Tor. To prevent timing attacks, Tor relays send cells

from different streams in a round-robin fashion.

2.2.2 Sybil attacks

These attacks serve as support for other types of attacks launched against the Tor network. In particular,

Sybil attacks consist of the deployment of multiple malicious relays controlled by an attacker, while

creating the illusion of belonging to different identities. The objective is to obtain a large disproportional

influence in the network [13], to increase the likelihood that user-created circuits include malicious relays.

In fact, an abundance of attacks on Tor, such as correlation attacks or timing attacks, depend on the

amount of network traffic the attacker can control and on the ability to trick users into connecting through

malicious relays [14].

Defenses against Sybil attacks are not trivial since a central authority would be required to assure

a correspondence between a relay and an identity [15]. However, using a central authority contradicts

Tor’s goal to eliminate single points of control. Said authority would increase barriers on new relays’

deployment. Another approach proposed by Bauer et al. [16] consists in limiting the number of new

accepted relays at directory authorities based on some kind of identification. The idea is to limit the

number of relays by IP address subnet. An attacker would need to have access to multiple sub-nets to

conduct the attack. Neither solution directly stops sybil attacks but instead increase the attacker’s cost

for this kind of attack.
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2.2.3 Predecessor attacks

Repeated communication between two endpoints of a Tor circuit may open the door to vulnerabilities

that can be exploited by a traffic analysis capable adversary [17]. To perform a predecessor attack,

an attacker must compromise an entry and an exit relay. This setup can arguably be made simpler

through a Sybil attack, where an attacker can reduce the time to achieve control of more nodes. The

goal of this attack is to learn the identity of a single or multiple senders when they are connected to a

destination over time. The attacker maintains a shared counter (one per honest node) in each malicious

node, initially zero. When a malicious node is selected to be a part of an anonymous circuit with a given

destination, the counter of its predecessor is incremented. This counter represents the number of times

a honest node is predecessor of a malicious node on circuits with the same destination. Figueiredo

et al. [17] characterize the capabilities of the attack and the sufficient and necessary conditions for the

attacker to succeed. They consider two situations regarding initiators: a single and multi-initiators, both

continuously sending traffic to the same destination. The attacker can use the counter values to discover

the set of initiators of a given circuit towards a specific destination.

Wright et al. [6] present a defense against predecessor attacks assuming a static network model, that

is, nodes do not leave the network. In this model, they assumed a set of N nodes from which C < N

are controlled by an attacker. All N nodes communicate with the next node, the responder, which does

not belong to N . The defense acts in rounds. In each round, each node computes a path containing

all other nodes between them and the responder. To defend against predecessor attacks, the authors

study the concept of fixing nodes in certain positions. There are variants of these defenses according

to the selected positions (e.g. first, last, or first and last). Considering the case of selecting the first

position on the path, unless the fixed node belongs to the set of nodes controlled by the attacker, users

are protected since the initiator of user communications is indeed the node. Tor uses the same approach

by imposing guard rotation restrictions [18].

2.2.4 Circuit fingerprinting attacks

Sun et al. [19] present an approach based on asymmetric traffic analysis allowing an adversary to

correlate and deanonymize a circuit’s endpoints, even if the attacker has access to different directions of

the flow, e.g., from client to entry and server to exit. The rationale of this technique is based on the fact

that the Internet relies on asymmetric connections, i.e. the path from the client to the server may differ

from the same server back to the client, and that an adversary is still able to perform traffic correlation

by observing different directions of a given flow. To augment the possibility of an adversary to observe a

flow, the authors also propose a BGP intercept attack that can be launched by a malicious AS in order

to divert traffic, enable traffic analysis, and forward traffic to the original destination.

2.2.5 Correlation-based analysis

One of the first correlation attacks based on timing analysis was proposed by Shmatikov and Wang [5].

Inter-packet timing information is usually not carefully protected in mix networks since it would require to
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delay packets to hide timing patterns. An attacker can exploit this timing property by correlating the inter-

packet time on both endpoint links, concluding that those links belong to the same circuit, which would

tie a source to the corresponding destination. They analyzed the resilience of low-latency anonymous

systems regarding correlation attacks based on packet interval time. They conduct several experiments

using HTTP traces. The attacker starts by observing a set of entry and exit relays in order to link entries

to exit nodes. Using an observation time of 60 seconds, the attacker divides the time into a fixed size

window. An attacker counts, during each time window, the number of observed packets. The correlation

between any two sequences is then computed using a cross-correlation metric.

A very influential work for performing flow correlation is DeepCorr [20]. DeepCorr uses advanced

machine learning algorithms, instead of statistical metrics to conduct accurate flow correlation on Tor.

Contrary to previous attacks, DeepCorr learns a correlation function which is able to link flow samples

regardless of their destination, while accounting for the unpredictability of the Tor network. Another in-

fluential and current state-of-the-art work described in the literature is DeepCoFFEA [21], which is more

effective than the previous state-of-the-art (DeepCorr), while also introducing a significant speedup.

In their work, Shmatikov and Wang [5] propose an approach consisting of using intermediate relays

to inject dummy packets to normalize statistical information, named adaptive padding. This padding

would reduce the ability of an adversary to fingerprint packets on a circuit. To protect against traffic

correlation attacks based on machine learning techniques, as in DeepCorr, Nasr et al. [20] propose

that Tor should enforce the use of pluggable transports across all relays, instead of just on bridges as

in vanilla Tor. However, while the use of pluggable transports enables the obfuscation of both traffic

patterns and content, the deployment of such a solution translates in significant performance reductions

and is thus disregarded as a feasible defense against correlation attacks to be implemented in Tor. Other

recent and promising countermeasures against traffic correlation attacks rely on employing AS-aware

relay selection mechanisms [2, 7, 8] that effectively decrease the probability that an adversary is in a

position necessary to observe traffic and carry out a correlation attack.

2.3 Defenses in the Tor Network

To mitigate traffic correlation attacks targeting the Tor network, researchers have proposed multiple

defensive approaches with various strengths and weaknesses. Next, we survey the most relevant ones,

organizing them into three main categories as described in each of the following sections.

2.3.1 Avoiding Unsafe Relay Nodes

As discussed above, by controlling the entry and exit nodes of existing Tor circuits, an adversary may

be able to deanonymize them, i.e., identify the IP addresses of the corresponding sender and receiver,

through multiple techniques. To mitigate adversary’s attempts to launch such attacks, clients may at-

tempt to avoid unsafe relay nodes by employing several strategies:

Run a co-located trusted relay node: Instead of connecting directly to an entry node that could be
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controlled by an adversary, the user may run a local (trusted) relay node alongside the Tor client, and

use that relay as entry node to the Tor circuits created by the user. As a result, the downstream relay

nodes will not be able to determine whether the traffic forwarded by the trusted relay node was originally

produced by the local user or by another user that may be using that same relay node for building its

own circuits. However, requiring every single user to run a relay node cannot be broadly implemented,

partly due to the hardships in configuring the system, but mostly because many Tor clients are located

behind restrictive firewalls where they cannot relay traffic [22].

Scan and flag bad relay nodes: Another approach is to decrease the possibility that clients select

malicious relays, by detecting and reporting bad relay nodes. Generally, a relay is considered to be bad

if it is malicious, misconfigured, or unreliable. To mark relays, Tor uses a set of labels designated as

flags [23]. Directory authorities vote to apply those flags by measuring bandwidth, uptime, and reliability.

This allows the client to select relays according to their position on the circuit. For example, an entry

relay should be long-lived. Otherwise, an attacker can setup a malicious relay and start discovering

client identities right away. Tor maintainers run a service aimed at verifying the reports of possibly

unsafe relays [24]. They will then attempt to reproduce the problem and possibly try to get in touch with

the relay operator. If the problem cannot be solved, Tor maintainers will assign a flag – e.g., BadExit – to

the reported relay, thereby instructing the clients to not use it any further in the future as exit node. Tor

maintainers scan the network for bad relays, especially bad exit nodes, using a tool named exitmap [25].

Additional tools can be used for that purpose by the community in general, such as torscanner 1, and

tortunnel 2. Some of these tools use decoy traffic to detect bad relays [26]. Tor also imposes that relays’

bandwidths should be continuously monitored by directory authorities in order to prevent malicious relays

from lying about their bandwidth (for load-balancing purposes, clients choose relays proportionally to

their measured bandwidth capacity). Directory authorities compute weights associated with each relay

class (entry, middle, exit) based on the current bandwidth of relays. This prevents a malicious relay from

advertising a (fake) 100 Gbps bandwidth, which would make it eligible to be selected by many clients.

Restrict the set of entry nodes used by a client: Suppose that an adversary controls or observes C

relays. Assume that the total number of relays on the Tor network is N . If every time a client uses the

network, it selects a new entry and exit relays, this means that the adversary can correlate the traffic

sent by the client with a probability of about (C/N)2, i.e., (C/N) chance of connecting to the first relay

and (C − 1/N − 1) chance for the last relay. Thus, selecting many random entry and exit nodes will

leave the user in a situation where his communications could be profiled by such an adversary. As a

defense mechanism against such attacks, Tor employs entry guards [18]: each client chooses a (guard)

relay from a list of three relays when making the first hop of circuits, and uses only those relays as

entry nodes. If the adversary does not control (or cannot observe) the guard, then the user is secure.

Otherwise, the adversary can indeed see a larger fraction of the user’s traffic, but the chance of avoiding

profiling drops significantly to a probability of about (N − C)/N .

In the past, clients chose an entry (guard) relay from a list of three relays, and each guard was

1https://code.google.com/archive/p/torscanner/ Accessed: 2023-01-05
2https://github.com/moxie0/tortunnel Accessed: 2023-01-05
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discarded after a 30-60 day period. This rotation of guards helps prevent known attacks and allow

to distribute client’s load across multiple guards. In particular, if a client was unlucky and selected a

malicious guard, he had the chance to regain anonymity when its current guard changed. However,

such parameters were not strong enough to hold a large AS-level adversary; this is described as Guard

Rotation Weakness [18]. Elahi et al. [27] empirically demonstrated that Tor’s time-based guard rotation

criteria led to clients switching guard relays more often than they should, increasing the possibility of

profiling attacks. The authors mention two main threats: when a guard replaces another guard due to

unavailability, and when the guard rotation occurs after a period of 30-60 days. In the first scenario,

selecting a malicious relay to replace an unavailable one does not present an immediate threat. The

malicious relay is placed at the end of a list composed of three guards that can be selected by the client.

If the unavailable guard becomes available again, then the malicious relay is discarded and replaced

with the previous guard. Selecting a malicious relay in the second scenario is a more critical threat, as

the malicious guard relay will be used multiple times by the client. To achieve a better trade-off between

anonymity and load balancing, clients are currently recommended to keep the same guard relay for a

period of nine months. To be suitable to be elected as a guard, a relay must meet a minimal bandwidth

threshold, its uptime must be greater than the median over all relays, and the node must have been

present in the network consensus for at least two weeks.

2.3.2 Avoiding Unsafe Autonomous Systems

Unfortunately, the techniques presented above may not be effective against an adversary that can ob-

serve large fractions of the network. Such an adversary may not even need to control any specific relay

node to deanonymize Tor traffic, but only to possess the ability to eavesdrop on the inter-relay traffic that

crosses the network controlled by the adversary [3, 28].

To cope with this problem, several authors have proposed new defensive approaches against AS-

level adversaries, i.e., those with the ability to access the network infrastructure of an entire AS. Typically,

such approaches attempt to help Tor clients choose paths away from the prying eyes of malicious ASes

by leveraging the analysis of the Internet topology boundaries and inter-relay latencies [29].

AS-level monitoring and tuning: As a way to prevent attacks based on traffic interception through

BGP hijacking, Sun et al. [19] have proposed a monitoring framework for detecting BGP changes. The

use of such a framework allows Tor to inform vulnerable clients, which in turn can opt to suspend Tor

communications or use another relay. The BGP monitoring framework uses two main heuristics. First,

if some AS announces a path to a prefix that it does not own frequently, the framework would alert for

a possible hijacking attack. Second, if the prefix is advertised only for a short period of time, then it

might be a routing attack. To have a robust solution, it is necessary to accurately know which ASes

are traversed by a given circuit path. To this end, the proposed framework computes the traceroute

of every Tor relay daily. Based on these results, it is possible to observe AS-level path changes and

detect suspicious ASes. The same authors also propose several techniques to reduce the probability

of AS-level attackers to perform BGP hijacking and interception attacks. As a matter of fact, most Tor
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relays’ IP addresses (90%) have a prefix shorter than /24. Therefore, authors suggest that Tor relays

should not operate with a prefix shorter than the /24 prefix. However, even with a /24 prefix, an attacker

can advertise another equal prefix. To cope with this situation, clients should prefer guard relays whose

AS-level path is the shortest. Given that a smaller number of ASes on the path translates into a lower

chance that one of them will advertise incorrect prefixes, this measure reduces the chance that malicious

AS falsely advertise routing prefixes.

AS-aware path-prediction: In order to mitigate correlation attacks, several authors have proposed AS-

aware path selection algorithms to decrease the chance of an AS-level attacker being able to observe

traffic flowing between both endpoints of a Tor circuit [2, 7, 8, 19].

Edman and Syverson [8] have experimented with adding two different requirements to Tor’s path

selection algorithm. The first requirement mandates that each node in a circuit must be located in a

different country, while the second dictates that, instead of requiring unique countries, each node should

be located in a different AS. Although the two approaches decreased the probability that an AS would

be able to eavesdrop at both ends of a connection, they did not sufficiently mitigate the possibility for a

malicious AS to perform traffic correlation. Thus, the authors have proposed a more effective heuristic

for safe AS path-aware selection. First, the client finds all the shortest forward and reverse AS paths

from the client’s AS to the entry node and from the exit node to the destination. The entry and exit paths

are sorted according to the cumulative frequency values of each edge in the path. The shortest n paths

with the greatest cumulative edge frequency values are then assumed to be the n most likely AS-level

paths from a source AS to the destination. If the same AS appears in any of the n entry paths and any

of the n exit paths, the chosen entry-exit node pair is discarded and a new pair is selected.

Akhoondi et al. [7] propose LASTor, an AS-aware Tor client that selects safe paths between a client

and a destination. The key insight of this technique is in the prediction of the set of ASes through which

traffic may be routed between a pair of IP addresses, instead of performing a prediction for a precise

route between these addresses. The potential for the existence of a malicious AS able to perform traffic

correlation is determined by checking if the intersection between the AS sets for the paths between the

client and the entry relay and between the exit relay and the destination is non-empty.

Sun et al. [19] approach consists in monitoring and storing paths between the client and the guard

relay, and also between the exit relay and the destinations. The idea is that each relay publishes, as part

of the Tor consensus document, the list of ASes it uses to reach a given relay or destination. Clients can

then use this information along their own measurements when constructing circuits. This allows clients

to select relays in a way that one AS will not appear on both the entry and the exit relay.

Nithyanand et al. [2] further developed an AS-aware variant of Tor, called Astoria. Astoria avoids

vulnerable circuits while employing an efficient network management by load balancing circuits across

secure paths. First, Astoria takes advantage of Internet topology maps to predict which ASes are placed

in critical locations for performing traffic correlation. Second, it identifies which ASes are more likely

to collude with each other and increase the chance of malicious ASes to launch a successful attack.

Astoria leverages a probabilistic model to select circuits on paths less liable to be correlated by an

adversary, when no completely safe circuits are found. This model minimizes the amount of traffic that
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is observable by an attacker over time. When there is more than one safe path available Astoria causes

a load balancing technique to prevent relay overload. By leveraging these techniques, Astoria is able to

reduce the probability of selecting a vulnerable circuit from 40% to 3%. The path selection algorithm of

Astoria is, however, arguably incomplete. Due to the existence of active BGP interception attacks [19],

Astoria’s Internet topology maps may become outdated for short periods of time, allowing an attacker to

still launch a correlation attack.

2.3.3 Avoiding Unsafe Geographical Regions

In addition to avoiding specific ASes, related literature focuses on avoiding entire geographic regions

altogether, typically at the country-level granularity. The motivation is oftentimes the need to evade

censorship policies against Tor traffic implemented by repressive governments.

Tor allows users to select a set of countries to exclude from circuit selection [22] i.e., regions to

which it should not forward client’s traffic. DeTor [30] presents techniques to prove that a Tor circuit

did not travel within excluded regions. To provide the so-called provable geographic locations, DeTor

authors borrow the idea of alibi routing [31] into Tor. Alibi Routing (AR) uses the packets’ Round Trip

Time (RTT) and the speed of the light as a constant to prove that a given packet did not travel within

forbidden regions. AR uses a single relay located outside the forbidden region to confirm that traffic is

going from that relay to the destination. This confirmation is based on a message authentication code

issued by the relay itself, attesting that the traffic was forwarded by that relay. If the RTT from the relay

to the destination is less than the smallest RTT that also includes a forbidden host, then it is possible to

conclude that the packet could not travel from within the forbidden region. While AR uses a single relay,

DeTor [30] generalizes this approach to three relays.

However, there are a few limitations regarding DeTor which make it an unconvincing solution for

providing provable geographical avoidance. A first limitation concerns the fact that DeTor obtains the

list of relays from the Tor’s public database which contains several bits of information, such as: IP

address, port, public key and country. If the information about the country is unavailable, DeTor uses IP

geolocation services to find the exact location of Tor relays, but without any further confirmation. This

may hamper DeTor’s ability to perform accurate measurements [32, 33]. A second limitation involves

handling links with high latency, where it is not possible to measure the packets’ travel times accurately

solely relying on RTT measurements. Another limitation is that DeTor assumes a symmetric routing

nature, i.e. assumes that the request and reply will traverse the same geographical locations, something

that may be unlikely to happen in practice.

A more recent piece of work by Kohls et al. [33] introduces the concept of empirical avoidance and

proposes new improvements to overcome DeTor’s main limitations. In their work, the authors propose

TrilateraTor, a system introducing a new measurement technique that derives a circuit end-to-end tim-

ing directly from the handshake in Tor’s circuit establishment procedure. To prevent the use of fake

GeoIP information in its measurements, TrilateraTor leverages a distributed measurement infrastructure

to perform trilateration and obtain accurate estimates of the physical location of Tor nodes.
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2.4 Defenses Used in Other Anonymity Systems

In addition to the defensive mechanisms studied for Tor, various alternative anonymity systems have

emerged that incorporate a wide range of defenses against traffic analysis attacks. In the following

sections, we provide an overview of the key mechanisms commonly employed across these systems,

starting with the most prevalent strategies, namely traffic mixing and distributed mixnets.

2.4.1 Traffic Mixing and Distributed Mixnets

Mixnets are used to obfuscate the correlation between a user’s traffic at both ends of a communication.

These mixnets consist of multiple servers or intermediaries through which traffic is routed, effectively

shuffling the packets’ order and timing.

Systems such as Vuvuzela [34], Karaoke [35], Loopix [36], Nym [37], and Atom [38] all leverage

variations of this traffic mixing technique. Generally, mixnets use three different mixing methods that,

when combined, provide a strong defense against traffic correlation attacks:

• Permutation mixing: The order of the arriving packets is shuffled before being sent to the next

node of the mixnet.

• Chaff mixing: Dummy packets are created and mixed with real packets to ensure that the real

traffic is always mixed with some other traffic, even when there is no other real traffic to mix with.

• Path mixing: Traffic from different clients is routed through different paths, making it difficult for an

adversary to even determine the endpoints to observe.

Although these three techniques in combination provide the strongest defense against traffic corre-

lation attacks, they also introduce a significant increase in latency. As such, some systems may opt to

use only a subset of these techniques, trading anonymity for better latency.

However, for these techniques to be as effective as possible, mixnets must follow a round-based

approach. This consists in forcing senders in the network to wait for a round of communications to send

their data. These rounds may be defined in different ways, but the two most common approaches are by

being globally scheduled or by being triggered by a certain amount of traffic ready to be sent surpassing

a threshold. Vuvuzela [34], Karaoke [35] and Atom [38] are all examples of systems that operate in

scheduled rounds. By operating in predefined rounds of communication, these systems can simplify

the timings of all communications, making it difficult for adversaries to find and correlate timing patterns

to break anonymity. Additionally, by accumulating traffic over time and sending it at a predefined time,

the effectiveness of the mixing performed by the mixnet also increases. However, this approach also

introduces a significant increase in latency, since clients must always wait for the next round to transmit

data. And, depending on the system, even the mix nodes may also have to wait for the next round to

transmit data, as is the case in Atom [38]. This makes these systems unsuitable for applications that

require low latency, such as web browsing. As such, it is used only by systems designed for applications

where low latency is not required, such as messaging systems.
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Figure 2.2: Overview of Vuvuzela’s [34] conversation protocol.

Triggered rounds are another approach commonly used in mixnets to balance the trade-off between

anonymity and latency. In triggered rounds, the start of a round is not pre-scheduled, but instead de-

pends on certain conditions being met, typically related to the amount of traffic waiting to be sent. This

is commonly used by mix nodes of a mixnet, which benefit strongly by accumulating received traffic and

relaying it to the next node only after enough traffic was accumulated to be able to perform the mixing

techniques effectively.

2.4.2 Dead Drops and Message Relays

The concept of dead drops, or intermediary storage points for messages, is another commonality. In

systems like Vuvuzela [34] and Karaoke [35], messages sent by users are temporarily stored on these

dead drops before recipients retrieve them. This separation in the communication process introduces

uncertainty, as adversaries cannot directly link sender to receiver. However, this approach often neces-

sitates the use of a rounds-based system, described further in this section, which increases latency in

the communication process.

Figure 2.2 shows an overview of the conversation protocol of Vuvuzela [34], where two clients, to

communicate with each other, must connect to the same dead drop through a mixnet each. For example,

if users A and C want to communicate, they must agree to use, for instance, dead drop X, and connect

to it both through their own mixnet circuit each. Additionally, Vuvuzela tolerates that two of the three

servers used in each of those circuits may be compromised by an adversary, which is represented in the

figure by the two red faces.

Loopix [36] uses something similar to dead drops, service providers, which can be seen in Figure 2.3

at the edges of the mixnet. In Loopix, these service providers serve as intermediaries and mailboxes

for clients. When a client wishes to communicate with a certain entity, it sends all traffic through its

service provider. Its service provider will then forward it through the mixnet to the destination and, upon

15



Service
Providers

Mix Loop
Drop
Client Loop

Types of cover traffic:

Figure 2.3: Overview of Loopix’s [36] architecture.

receiving the destination’s response, will store it until the client requests it. The usage of these service

providers improves receiver anonymity by ensuring that recipients only receive messages when explicitly

requested, rather than as soon as possible. This makes it harder for an attacker to link a sender to a

receiver through observation of timings, as the time the receiver requests its messages from the service

provider may be completely unrelated to the time they are sent.

2.4.3 Constant-Rate Traffic and Padding

A prevalent countermeasure against traffic correlation attacks is the injection of noise into the commu-

nication process. Both Vuvuzela [34] and Karaoke [35] introduce noise to obscure information about

communications that an observer may learn. These systems mainly do this by forcing all clients to al-

ways send a message each round, even if they have nothing to send and no communication to perform.

In the case of Vuvuzela [34], the mixnet servers add noise to thwart attackers’ efforts to correlate user

actions with traffic patterns. This noise serves to introduce uncertainty about the authenticity of observed

traffic and the presence of actual communication.

Another anonymity system, Loopix [36], employs a unique approach to noise injection by incorporat-

ing three types of cover traffic. Of these three types of cover traffic, two are sent through loops, allowing

the senders of traffic to avoid overloading other destinations and allowing them to detect possible is-

sues or attacks being performed in the network. The three types of cover traffic used in Loopix are the

following.

• Drop Cover Traffic: Generated by a client and sent to a randomly selected service provider,

instructing it to drop the traffic.

• Client Loop Cover Traffic: Traffic generated by a client and sent back to itself, passing through
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the mixnet and arriving back at the client.

• Mix Loop Cover Traffic: Traffic generated by a service provider and sent back to itself, passing

through the mixnet and arriving back at the service provider.

These types of cover traffic, shown in Figure 2.3, introduce uncertainty about the authenticity of

observed traffic and the presence of actual communication. By blending real messages with cover

traffic, Loopix [36] improves user privacy and makes it challenging for adversaries to distinguish real

communication from noise. The design of our system, Shaffler, takes a lot of inspiration from these

techniques used by Loopix.

Systems such as TARANET [39], an anonymity system based on HORNET [40], that aims to thwart

traffic analysis, employ the concept of constant-rate traffic, achieved through the use of traffic padding.

A sender in the TARANET [39] system divides its traffic into flowlets that transmit packets at a constant

rate defined globally. Since all senders transmit at the same rate, their traffic becomes indistinguishable,

making it theoretically impossible to correlate traffic entering the network with traffic exiting it.

To achieve this constant rate of traffic, as well as to allow a client to transmit data even when it is not

enough to fill a flowlet, TARANET [39] uses traffic padding. This padding is added to the client’s traffic

to ensure that it is always transmitted at the constant rate. However, determining the optimal constant

rate remains crucial. Setting it too high risks network overload, while setting it too low may limit the rate

at which users can transmit real traffic. The challenge is to strike the right balance to ensure strong

anonymity and low latency.

Other systems, such as ditto [41], a traffic obfuscation system for Wide Area Networks (WANs),

employ similar techniques that, instead of aiming for a constant rate of traffic, aim for a repeating pattern

of traffic that is as similar as possible to real traffic. These systems do this by adding dummy packets

or chaff traffic in a controlled manner, to achieve that predefined traffic pattern. This pattern is then

repeated over time, making it difficult for an adversary to know when real traffic is being sent and the

amount of real traffic being sent.

2.4.4 Traffic Modeling and Delaying

Traffic modeling involves representing traffic as a stochastic or probabilistic process, typically following a

known statistical distribution or modulation function. One possible way to perform this traffic modeling is

by applying to each packet individually a delay selected through a certain function based on probability.

In Loopix [36], for instance, the Poisson distribution is used for this purpose due to its mathematical

properties and suitability for modeling random independent events over time.

Essentially, each client models its traffic as a composition of four independent Poisson processes,

representing real traffic and each of the three previously mentioned types of cover traffic. An interesting

property of this design is that the sum of these Poisson-distributed processes results in a composite

Poisson-distributed traffic pattern. As a result, the cover traffic blends seamlessly with the real traffic in

a way that preserves the statistical properties of the original Poisson process, making it challenging for

adversaries to distinguish real communication from the noise introduced by the cover traffic.
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Low
Latency

Resistant
to TCA

Traffic
Modulation

Cover
Traffic

Compatible with
the Tor Network

Tor [1] ✓ ✗ ✗ ✗ ✓

Vuvuzela [34] ✗ ✓ ✗ ✓ ✗

Atom [38] ✗ ✓ ✓ ✗ ✗

Loopix [36] ✓ ✓ ✓ ✓ ✗

Nym [37] ✓ ✓ ✓ ✓ ✗

Shaffler ✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison of various anonymity systems.

Additionally, Loopix [36] introduces a delay mechanism to further obfuscate the correlation between

the traffic of a user at both ends of a communication. This delay is chosen by the client independently for

each hop in the path, from an exponential distribution, and sent inside its corresponding layer of encryp-

tion, so that each corresponding mix node can retrieve its delay and apply it. By using an exponential

probabilistic distribution, not only are the delays likely to be small, but the traffic’s modeling as a Poisson

process is also preserved, thanks to the memoryless property of the exponential distribution. Further-

more, a study published by Danezis [42] concludes that the optimal distribution from which to select

delays for continuous-time mixing is the exponential distribution, in terms of the resulting anonymity and

latency. Another system that uses the exponential distribution to select delays is the Nym network [37].

Although these probabilistic distributions are chosen specifically to minimize as much as possible the

latency introduced to the system, they still introduce significant communication delays in exchange for

stronger anonymity.

2.4.5 Discussion

As discussed in Sections 2.2 and 2.3, Tor is vulnerable to traffic correlation attacks, where an adver-

sary attempts to correlate traffic observed at both endpoints of a circuit through the analysis of various

patterns to link the source of a communication to its destination.

One way to reduce the risk of such attacks is to avoid unsafe relay nodes. This can be done, for

example, by deploying trusted relays on the client endpoints, continuously scanning and announcing

bad relay nodes, or by imposing the usage of reliable guards by limiting the period of rotation.

However, even if we manage to avoid using compromised or malicious nodes, it is still possible for a

larger AS-level adversary to perform these attacks simply by observing the traffic in the network, without

the need to control ORs. While this threat can also be mitigated by attempting to identify and avoid

unsafe ASes and geographical regions, other defenses have been studied that tolerate the fact that an

adversary may have the ability to observe traffic at both endpoints of a circuit.

Several anonimity systems have been proposed that employ various techniques to deal with these

threats, such as generation of cover traffic and traffic modulation, both of which we aim to implement in

our modified version of Tor. Table 2.1 presents a summary of some characteristics provided by Shaffler,

and compares it with various other anonymity systems. Although these techniques that we aim to use

are already present in many anonymity systems, Shaffler aims to bring these techniques to the Tor
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network, providing a version of Tor that not only supports them, but also maintains compatibility with the

existing Tor infrastructure.

Summary

This chapter discussed the concept of the Tor anonymity network and its components, such as OSes.

We noted the various types of attacks studied against the Tor network, which can be divided into two

categories: those that involve malicious Tor entities and those that involve traffic analysis. The chapter

also discussed the main defenses studied against these attacks. Entering in more detail about the

main approaches to defend against traffic analysis attacks, the chapter discussed preventing users from

selecting unsafe relays or autonomous systems entirely. Finally, the chapter presented an overview

of the main techniques used by other anonymity systems to defend against traffic correlation attacks,

discussing their advantages and disadvantages. The next chapter presents the design of Shaffler, our

proposed solution to enhance Tor against traffic correlation attacks.
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Chapter 3

Design

In this chapter we present the design of Shaffler, our proposal to protect Tor against traffic confirmation

attacks. First, we start by presenting our threat model (Section 3.1). Then, in Section 3.2, we present

the architecture of Shaffler. We start by providing an overview of both our system and its novel defensive

strategy to prevent said attacks. Then, we further explain how we propose to overcome several technical

challenges of integrating Shaffler with Tor covering independently the two central defensive techniques

of our system: traffic modulation (Section 3.3 and covert traffic generation (Section 3.4).

3.1 Threat Model

Our threat model extends Tor’s original threat model by adding focus to the threat of traffic correlation,

which is listed as a non-goal of Tor in the original paper [1]. Specifically, we consider our main adversary

to be an attacker that can passively observe the ingress and egress flows of a circuit and may attempt

to correlate them. Such an adversary can be impersonated, for instance, by an ISP or multiple colluding

ISPs with the ability to monitor the guard nodes and exit nodes of Tor circuits. ISPs could be mandated

by governments, law enforcement agencies, or other organizations with the resources and capabilities

to conduct targeted or mass surveillance operations.

Although this threat model does not consider global passive adversaries, which would assume that

the adversary could observe the communications of all the Tor nodes, it does assume that adversaries

may have the ability to monitor network traffic, either by tapping into the network at various points or by

controlling routers used in a circuit. However, we realistically limit the strength of the attacker to being

able to control at most two of the three ORs used in a circuit. Considering that the attacker’s objective

is to perform traffic correlation, the most threatening of the resulting combinations are the entry and exit

nodes. As such, we assume that the middle node is trusted.

Similarly to Tor’s original threat model, we consider that the exit relay of a circuit may be compro-

mised, meaning that the attacker may have access to its internal state. However, we do not consider

any active attacks.

Attackers may also have access to advanced computing resources that, while not enough to break
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cryptographic primitives, can be used to deanonymize users. Adversaries may also possess sophisti-

cated traffic analysis techniques, such as machine learning algorithms.

3.2 Architecture

Shaffler aims to protect Tor clients against traffic confirmation attacks. To do this, Shaffler proposes

a new traffic mixing strategy for Tor. Considering that we want to protect the circuit of a specific Tor

client (a target circuit), this approach is based on two main ideas. First, we want to ensure that the

entry node, the exit node, or both receive enough concurrent covert traffic so that it can disguise the

packets tunneled through the target circuit. Otherwise, in the extreme case where the target circuit is

the only circuit being relayed through the entry and exit nodes, the adversary can trivially infer that a

single source is transmitting packets through both nodes and perform timing and volumetric analysis to

deanonymize the client.

To prevent this problem, Shaffler generates client-controlled covert traffic directed toward the entry

node of the circuit. This is done by running a dedicated web server behind an OS in the client’s own

machine and initializing a cover client, which creates covert sessions with that OS. By using the same

Tor process for the real user traffic, the cover client traffic, as well as the cover OS traffic, we not only

ensure a better mixing of all types of traffic, but also ensures the usage of the same guard node for all

traffic.

Secondly, Shaffler will further perturb the timings of the packets tunneled through both the target

circuit and the covert OS sessions, making timing analysis harder for an adversary to perform. This

perturbation is achieved by carefully delaying packets at the middle node of a circuit so that the timing

patterns observed at the entry of the circuit suffer modifications before reaching the exit of the circuit,

where an adversary would expect to observe them again. By making modifications to the timing patterns

of traffic in the middle of the circuit, we make it harder for an adversary to accurately identify correlations

between timing patterns observed at both edges of the circuit. Additionally, when used in combination

with the generation of cover traffic, it may increase the probability that flows observed at other exit points

of the network are identified as being more similar to a flow observed at the entry than the truly related

exit flow. However, packet delaying must be achieved without causing visible alterations in the typical

packet time distributions of regular Tor circuits and without introducing significant overheads to the end-

to-end circuit latency. Furthermore, modulating packet timings should be performed without the need to

rely on the correct or informed behavior of the exit nodes, which could be controlled by the adversary.

To satisfy these requirements, our idea is to implement packet timing modulation controlled by the client

and with the cooperation of the middle nodes, employing specific modulation functions that need to be

carefully studied.

With all this in mind, we designed Shaffler following the architecture depicted in Figure 3.1. We

propose to integrate four custom components for modulating traffic: a modulation instructions decoder,

a modulation instructions encoder, a modulation function, and a cell delayer. These components can be

observed in the Tor software stack, in Figure 3.1, at the client endpoint and at the mix nodes, colored
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Figure 3.1: Shaffler system architecture.

orange. In addition to these components, the client will include an additional component named cover

manager which will be responsible for setting up and maintaining covert OS sessions, by deploying

the necessary processes. This component and its spawned processes can be seen represented in

the Client’s system in Figure 3.1, colored dark gray. Together, these components generate cover traffic

and delay the transmitted data to attempt to prevent attacks carried out by an adversary that can use

machine learning algorithms to correlate the traffic observed at both endpoints of a circuit. Additionally,

Shaffler is designed to be compatible with the vanilla version of Tor, so that if a user running Shaffler

attempts to form a circuit through non-Shaffler nodes, the standard functionality of Tor is guaranteed,

even if the features of Shaffler are unavailable. To use Shaffler, a user must simply install the modified

version of Tor and launch both that version of Tor and the cover manager.

3.3 Traffic Modulation

One of the techniques used by Shaffler is traffic modulation, which consists of delaying traffic through

the use of a modulation function that specifies how delays are chosen. These modulation functions can

be based on multiple approaches, ranging from state machines to statistical distributions.

Modulation functions: Although our main objective in this thesis is to provide and study modulation

functions based on statistical distributions, it is also our focus to design our system in such a way that

other researchers can easily implement and test their own modulation functions. Table 3.1 shows the

modulation functions we include in our prototype, as well as their parameters and a visual representation

of their probability curve. Additionally, it includes a brief description of the characteristics of each function

with respect to the distribution of probability across a range of values.

Although these characteristics may provide us with intuitions about the effectiveness and impact on

performance of each function, it is important to verify those intuitions with experimental results. For this

purpose, we must perform an experimental analysis comparing all functions, which we will present in

Section 5.2.
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Name Parameters Characteristics Curve

Uniform min : minimum
max : maximum

All values between the min and the
max have the same probability of
being selected.

Normal µ : mean
σ : std. deviation

Values closer to the mean have a
higher probability of being selected,
and both sides of the mean have an
equal distribution of probability.

Poisson λ : mean

Values closer to the mean have a
higher probability of being selected,
and the distribution becomes more
concentrated as λ increases.

Exponential λ : rate

Values closer to zero have a higher
probability of being selected and
the distribution becomes more con-
centrated as λ increases. High val-
ues have a low probability of being
selected but are possible.

Lognormal µ : location
σ : shape

Higher concentration of values
around the mean, with a long tail
of high values, which are possible
but have a low probability of being
selected.

Table 3.1: Table showing the modulation functions that are provided by the Shaffler system.

Who modulates: It is also important to decide which entity in the circuit should be responsible for

applying the modulation functions. Although having as many entities as possible modulating traffic and

applying delays would possibly lead to stronger protection, it would most likely have an unacceptable

impact on the latency of any communication. An exception to this would be if we were able to achieve a

fine enough time resolution when delaying to allow modulation to be distributed through various entities.

However, achieving such a fine resolution may not be feasible and even if possible, may result in requiring

better computational resources to run Shaffler. As such, we decided on a single entity to assign the role

of traffic modulator. Considering our threat model, which states that the entry and exit nodes of a circuit

may be observed by an adversary, choosing either the entry or exit node for this role would result in the

technique being either defeated or weakened. Figure 3.2 shows how either of these nodes, the entry

and the exit, would be able to easily defeat the effects of the traffic modulation technique, in the case of

the entry node, by linking the client with the traffic patterns observed after modulation, and in the case

of the exit node, by linking the patterns observed before modulation with the web server that is being

accessed.

Another option would be to have the client modulate its own traffic, which would likely help normalize

the traffic timing patterns of all flows. However, by modulating the traffic before it even reaches the entry

node, we are unable to modify the timing patterns so that these patterns are not seen again at the exit
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Figure 3.2: Diagram showcasing the potential issues with relying on the entry node or the exit node to
modulate traffic. Our threat model considers that an adversary may be able to monitor traffic at both the
entry and the exit nodes, but not at the middle node.

node. Taking into account these limitations, we decided to assign this responsibility to the middle node,

which our threat model assumes to be trusted and which is in the best position in the circuit to be able to

modify the traffic patterns between the two observation points of the path followed by the user’s traffic.

Who decides how to modulate: It is also important to decide which entity in Shaffler should have the

responsibility of choosing how to modulate traffic. While having the delaying node decide which delays to

add may lead to a simpler solution, it does not provide users of the Tor network with the ability to choose

and tweak their own priorities. This may be important as different clients may have different priorities,

and while one user may be more concerned with ensuring the best anonymity possible, another user

may prefer sacrificing some protection to traffic correlation attacks for better performance. Providing

this option to clients is especially important, given that Tor is already known to be slow, and delaying

traffic will worsen that even more. Furthermore, by making this a client’s decision, even if the technique’s

performance results leave a lot to be desired and are unacceptable for regular use, it may still be used

as an ultra protection mode that may be activated only when a user truly feels it is needed.

Another option would be to have the client alone decide how their traffic is to be modulated. For this,

a mechanism would be required that allows the client to inform the middle node of the exact delay they

should apply to a packet. This delay would have to be encoded in some way in every Tor cell, so that it

may be decoded and applied. However, this approach may raise some problems, as it is likely to require

adding an overhead to each Tor cell, and it may be hard to maintain compatibility with the existing Tor

network. As such, a hybrid of these two approaches was also considered. In a hybrid approach, both

the client and the delaying node have roles to play. The client is able and expected to provide, during

the creation of the circuit, instructions to the delaying node on how traffic should be modulated. This

information must then be remembered by the delaying node so that it may follow those instructions when

deciding on a delay to apply to a cell passing through that circuit.
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How traffic is delayed: To avoid changing the order of cells, delays must not be applied in relation to

the arrival of a cell but instead in relation to the time the previous cell was sent. The only exception to

this is if the previous cell has been sent too long ago, which would lead to no delay being applied. In this

case, the delay must exceptionally be applied in relation to the arrival time of the cell.

3.4 Generation of Cover Traffic

As mentioned in Section 3.2, our solution resorts to generating cover traffic to complement the traffic

modulation technique explained above and carried out at the circuits’ middle nodes. The goal is to

strengthen the anonymity guarantees provided by Shaffler by further hindering the correlation of flows

captured near the client and the ones captured near the webserver being accessed.

Shaffler does this by generating artificial Tor traffic and directing it towards the legitimate circuit’s

guard node. Instead of accessing a different publicly available webserver, our solution spawns one in

the client’s machine, making it accessible through an OS, and looping the traffic in an approach similar to

the one used in Loopix [36]. A possible alternative to using an OS would be to use a simple web server,

also hosted on the client’s machine. However, although initially it might give the idea of reducing the load

of the technique on the network, that does not seem to be the case. To compare the unnecessary load

on the network created by these alternatives, we can use the Precision metric (given by Equation 3.1),

where #TP is the number of cover traffic flows that pass through the target node, and #FP is the

number of cover traffic flows that pass through other nodes, as a side effect.

Precision =
#TP

#TP +#FP
(3.1)

For the non-OS approach, we have #TP = 1 as the flows of cover traffic pass once through our

target, the guard node, and #FP = 2 as the flows of cover traffic pass through two other nodes, the

middle and the exit. For the OS approach, we instead have #TP = 2 since each flow of cover traffic

passes twice through the guard node and #FP = 4 since these flows will pass through four other

nodes, as shown in Figure 3.3. By calculating this metric for both approaches, we obtain the same

efficacy value of 1/3, which means that even though the OS approach requires more non-target nodes

to forward traffic, the increase in “useful” load increases proportionally with this increase in side effects.

However, there are some specific differences, such as that by using an OS instead of a simple web

server, we can avoid forwarding cover traffic through exit nodes, which are less common in the Tor

network than other types of nodes. Additionally, by using an OS we avoid requiring that users configure

NAT on their local network to make the web server accessible from outside the network. For these

reasons, we decided to use an OS.

In addition to spawning an OS to receive and respond to loop traffic, Shaffler also runs a dedicated

process responsible for generating it. This component, called cover client, sends requests to the client’s

OS, making sure to do so via the same guard node as the legitimate traffic. This cover client is cus-

tomizable, allowing us to control the frequency of requests and adjust the desired response by the OS.
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Figure 3.3: Shaffler’s cover traffic generation design.

The highly customizable nature of both cover OS and cover client enables Shaffler to tailor the

generation of cover traffic to the characteristics of the legitimate process. We intend to study how

different patterns of artificial traffic impact the system in both efficacy and network overhead, seeking

to strike a balance between a solution that indeed defends against correlation attacks while not causing

significant performance degradation for the user or excessive load on the Tor network.

Figure 3.3 depicts Shaffler’s cover traffic generation design. In it we can see a user, on the left, using

the system to mask its access to a web server, on the right, through the Tor network. In particular, we

can see how, in addition to the user’s ”regular client” (the one used to access the web server), there are

two additional components involved: the cover OS and the cover client mentioned above.

Shaffler’s design requires all 3 components to send traffic through the same Tor process running on

the user’s machine. This makes it so we can ensure all packets sent to the Tor Network do so via the

same Guard Node with minor configuration required. The fact that all Tor traffic sent from the user’s

machine enters the network through the same Guard hinders an attacker’s ability to correlate the flows

captured at both the Guard and Exit nodes. In fact, even if the packets captured near the web server

concern only the user’s access to it (green colored traffic), the packets captured near the Guard now

consist of a mix of web server traffic (in green) and cover traffic (in yellow and blue). Both OS requests

and responses can be modulated as needed, allowing for the introduction of further variability.

Summary

This chapter presented the design of Shaffler, our proposal to protect Tor against traffic confirmation

attacks. We started by presenting the threat model considered. Then we presented the architecture of

Shaffler, which is based on two main ideas: generating client-controlled covert traffic directed toward

the entry node of the circuit and further perturbing the timings of the packets tunneled through both the

target circuit and the covert OS sessions. We also presented the four custom components for modulating

traffic: a modulation instructions decoder, a modulation instructions encoder, a modulation function, and

a cell delayer. In addition to these components, the client will include an additional component named

cover manager which will be responsible for setting up and maintaining covert OS sessions. In the next

chapter, we present our implementation of the Shaffler system.

27



28



Chapter 4

Implementation

This chapter describes the implementation of the Shaffler system. We begin by describing the imple-

mentation of the Minimum Viable Product (MVP), which was used to test the viability of the system as

well as some basic ideas. Then we describe the full implementation of the system, which includes all of

the functionalities described in Chapter 3.

4.1 Exploratory Prototype

We started by developing a prototype that included all the main functionalities of the Shaffler system.

This section describes the implementation details of this MVP, as well as the drawbacks that were

identified, and led to the development of new solutions. To implement Shaffler we used two programming

languages, C and Python. To implement traffic modulation, we modified Tor version 0.4.7.13, which is

written in the C language. For the implementation of our cover traffic technique we instead used Python

3.11.2.

4.1.1 Encoding and decoding delays

An important challenge we first had to address was how and where to modulate traffic using a modulation

function to delay Tor circuits’ packets. Importantly, we had to devise a mechanism that, on the one

hand, would support generic modulation functions, and, on the other, would not be too intrusive on Tor,

requiring dramatic changes to the Tor protocols. To tackle this challenge, we began from the observation

that, in the Tor network, communications are made through Tor cells. These cells contain a field reserved

for commands that inform relays of the kind of operation they must perform. Some notable examples of

cell commands are the CREATE command, which informs an OR of the intention of extending the circuit

to include it, and the RELAY command, which informs an OR that the cell must be forwarded to the next

node in the circuit, until it reaches the edge of the circuit.

A promising candidate that we identified for the encoding of delays was the relatively large difference

between the maximum number of values allowed by the size of the field and the number of commands

implemented. This difference is due to the capability of 1 byte to encode 28 = 256 numbers, of which
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only 18 were assigned to commands. This meant that it was possible to create a total of 256− 18 = 238

new commands. Hypothetically, this available bit space could be used for encoding delays.

However, our objective was not to create a new command as that would require larger changes

to the Tor protocols, but instead to expand the existing commands into as many variants as possible,

so that each variant would encode a different delay. As such, we identified two possibilities: either (i)

expand all commands into 238/18 ≈ 13 variants or (ii) select the most important types of cells to delay

and only expand those into variants. By using command variants instead of, for example, general delay

commands, we are able to maintain all protocols as they are, simply changing the way commands are

parsed to check if a command value is within a range of values, instead of checking if it matches a

specific value. Besides this, only the component responsible for applying the delays is required to parse

and distinguish the variants of the commands, to obtain the delay to apply.

Although we wished to be able to delay the largest variety of traffic possible, we also wanted to sup-

port a wide variety of delays. Therefore, with this trade-off in mind, we decided to expand the command

that we considered to be the most important, the RELAY command, allowing us to encode the 238

different delays mentioned above. To define these command variants we first reorganized the macros

defined in the or.h file to be contiguous. Then we defined two new macros, CELL_RELAY_DELAY_MIN and

CELL_RELAY_DELAY_MAX, and increased the value assigned to the macro CELL_COMMAND_MAX_ to our new

max command value, the CELL_RELAY_DELAY_MAX.

4.1.2 Applying delays

Another challenging aspect of the implementation of our system is the middle node’s method of applying

delays. Our implementation of this method can be separated into two components: (i) the method

of self-identification of a node as the middle node and (ii) the method of creating a delay between a

cell’s arrival and departure. We will discuss the implementation of both these components, starting with

component (i).

Implementing a method for nodes to identify themselves as a middle node would be trivial if nodes

of a circuit were provided with information regarding their positions. However, in Tor, only clients have

a clear view of the circuits created by themselves and thus, are able to know the positions of all nodes

of a circuit; the nodes themselves are, by design, not given that information. Nevertheless, there is a

method that, while not perfectly reliable, can be used by ORs to identify their position. The basis of this

method is the ability to distinguish addresses of ORs from “normal” addresses, through the presence

of those addresses in Tor’s node list. This, together with the fact that each node of a circuit knows the

addresses of both the previous and next peers, allows us to describe a middle node as a node whose

addresses of both directions’ peers are present in the node list. Listing 4.1 shows our implementation

of this method. Most of the code serves only to obtain the previous and next nodes’ addresses from a

circuit_t structure; it is only at line 25 that nodelist is queried for those addresses.

However, as already mentioned, this method is not perfect, since the possibility for a Tor client to

simultaneously be an OR, can lead to an entry node being mistakenly identified as a middle node. In
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1 int
2 probably_middle_node_circ(circuit_t *circ)
3 {
4 if (!circ || circ ->magic == ORIGIN_CIRCUIT_MAGIC)
5 return false;
6 or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
7 if (! or_circ)
8 return false;
9 return probably_middle_node_channels(or_circ ->p_chan , circ ->n_chan);

10 }
11

12 int
13 probably_middle_node_channels(channel_t *p_chan , channel_t *n_chan)
14 {
15 if (! p_chan || !n_chan)
16 return false;
17 channel_tls_t *p_chan_tls = BASE_CHAN_TO_TLS(p_chan);
18 channel_tls_t *n_chan_tls = BASE_CHAN_TO_TLS(n_chan);
19 if (! p_chan_tls || !n_chan_tls)
20 return false;
21 connection_t *p_conn = &(p_chan_tls ->conn ->base_);
22 connection_t *n_conn = &(n_chan_tls ->conn ->base_);
23 tor_addr_t prev_node_addr = p_conn ->addr;
24 tor_addr_t next_node_addr = n_conn ->addr;
25 return nodelist_probably_contains_address (& prev_node_addr) &&
26 nodelist_probably_contains_address (& next_node_addr);
27 }

Listing 4.1: Code of the function that attempts to identify whether a node is the middle node of a circuit
or not.

such a case, there would be two possibilities. If the entry node does not forward the delay command

to the middle node, assuming that it is no longer needed, the effectiveness of the traffic modulation

technique could be threatened, as discussed in Section 3.3. If the entry node instead forwards the

delay command to the middle node, both nodes would end up delaying traffic, resulting in an increase in

latency of communications.

After a node identifies itself as the middle node using this method, it must then proceed to apply the

delay itself. To implement this, we first attempted a very simple and naive approach. This approach

consisted of calling the nanosleep() function (defined in the time.h library) immediately after decoding

a delay command, to put the active thread to sleep for the decoded amount of time. This approach

seemed to work well when simulating a small number of clients. However, simulating a larger number

of clients revealed a major oversight: Tor is a single-threaded application. This meant that delays meant

to be applied to one cell were instead essentially being applied to all cells received by the OR at around

the same time.

One possibility to somewhat help solve this problem would be to use a multithreaded implementation

of Tor, such as the one proposed by Engler et al. [43], that distributes circuits and connections between

multiple threads. However, even such an approach would not eliminate but rather simply reduce the

interference between cells, since a perfect solution would require one thread to be exclusively assigned

to each active connection.
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Figure 4.1: Diagram showing the additions made to the circuit creation protocol to allow the communi-
cation of delay policies.

4.2 Final Prototype

After testing and identifying issues in our MVP, we proceeded to research and implement new solutions

that addressed those issues. These issues include the ones previously discussed, such as the limited

amount of delays that can be encoded, the imperfect method of identifying nodes as the middle node,

and the inadequacy of the nanosleep() function to delay cells. This section details the implementation

and technical limitations of our final proposed solution for the Shaffler system.

4.2.1 Encoding and decoding delay policies

For the new version of the system, we decided to abandon the idea of having each client decide on a

delay command for each cell. We opted, in turn, to allow clients to choose and customize the traffic

modulation function that is used for their traffic. To make this possible, a method for the client to commu-

nicate its choices to the middle node was necessary. For this purpose, we implemented a method that

piggybacks on Tor’s circuit creation protocol, which can be seen in Figure 4.1, together with the added

data structures.

Original protocol: The original protocol works as follows: When a client desires to create a new

circuit, it sends a CREATE cell to the desired entry node and expects a CREATED cell as response,

indicating that the entry node is now part of the circuit. After that, the client, to extend the circuit to a

middle node, sends an EXTEND cell along the circuit, which is transformed into a CREATE cell by the

entry node and sent to the desired middle node. The middle node then responds with a CREATED cell

that is repackaged into an EXTENDED cell by the entry node and sent to the client, to inform him of the

success in adding the middle node to the circuit.

These messages sent to add the middle node to the circuit provide an opportunity to send information

towards the middle node. These four types of cell (CREATE, CREATED, EXTEND, and EXTENDED)
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1 int
2 extend_cell_format(uint8_t *command_out , uint16_t *len_out ,
3 uint8_t *payload_out , const extend_cell_t *cell_in ,
4 delay_policy_t delay_policy)
5 {
6 (...)
7

8 /* SHAFFLER: Insert delay policy into extend cell payload */
9 if (get_options ()->EnforceDelayPolicy || delay_policy.mode) {

10 if (* len_out + 16 + sizeof(delay_policy_t) > RELAY_PAYLOAD_SIZE) {
11 return -1;
12 }
13 memcpy(payload_out +*len_out , DELAY_POLICY_MAGIC , 16);
14 memcpy(payload_out +* len_out +16, &delay_policy , sizeof(delay_policy_t));
15 *len_out += 16 + sizeof(delay_policy_t);
16 }
17

18 return 0;
19 }

Listing 4.2: Code added to the function responsible for formatting an EXTEND cell.

do not fully occupy the 509 bytes of their payload, allowing us to use the remaining space to send a

specification on how to modulate traffic to the middle node, which we call delay policy.

Delay policy: Regarding the delay policy, we define it as composed of four values: the delay mode,

which specifies the modulation function to be used; the parameters to be used in the specified function;

and the maximum value allowed for a delay, to force any delay higher than that value to be discarded

and replaced. The delay mode is the only one of these values that is restricted, as it must correspond to:

the “None” mode, which deactivates delays, the “Auto” mode, which tells the middle node to modulate

traffic according to its own policy, or any of the modulation function modes.

Modified protocol: The modifications made to the protocol start when sending the EXTEND cell,

whose objective is to add the middle node to the circuit. Listing 4.2 shows the necessary additions made

to the extend_cell_format() function, which is responsible for packaging all the required information

into an EXTEND cell. The client appends to the payload of the EXTEND cell a 16-byte magic number

followed by the delay policy itself. Additionally, before doing that, as shown in line 10, we check if the

payload truly has enough free space for all the data we want to add. If the check fails, we raise an error,

which will result in the circuit creation being aborted.

Upon receiving this EXTEND cell, the entry node will check for the presence of the magic number,

in the function extend_cell_parse(), and in case it is found, will copy the magic number and the delay

policy that follows it to the payload of the CREATE cell, in a similar way to what was done previously for

the EXTEND cell. Next, the entry node sends this new CREATE cell to the middle node, which will again

check if the magic number is present in the payload and, if so, will proceed to extract and interpret the

delay policy. Listing 4.3 shows the modifications made to the create_cell_init() function that is used

to interpret an incoming CREATE cell.

After interpreting the contents of the cell, the middle node must process them. During this process-

ing, the delay policy received in the CREATE cell is inserted into the corresponding or_circuit_t data
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1 void
2 create_cell_init(create_cell_t *cell_out , uint8_t cell_type ,
3 uint16_t handshake_type , uint16_t handshake_len ,
4 const uint8_t *onionskin)
5 {
6 (...)
7

8 /* SHAFFLER: Parse the delay policy into the CREATE_CELL */
9 if (tor_memeq(onionskin + handshake_len , DELAY_POLICY_MAGIC , 16)) {

10 cell_out ->delay_policy_is_set = 1;
11 memcpy (&cell_out ->delay_policy , onionskin + handshake_len + 16, sizeof(delay_policy_t));
12 }
13 else {
14 cell_out ->delay_policy_is_set = 0;
15 memset (&cell_out ->delay_policy , 0, sizeof(delay_policy_t));
16 }
17 }

Listing 4.3: Code added to the function responsible for interpreting a CREATE cell.

1 static void
2 command_process_create_cell(cell_t *cell , channel_t *chan)
3 {
4 (...)
5 /* SHAFFLER: Copy delay policy from CREATE_CELL to CIRC */
6 circ ->delay_policy_is_set = !get_options ()->DisableDelays && create_cell ->

delay_policy_is_set;
7 if (circ ->delay_policy_is_set) {
8 log_info(LD_GENERAL , "[SHAFFLER ][ POLICY] Received delay policy");
9 memcpy (&circ ->delay_policy , &create_cell ->delay_policy , sizeof(delay_policy_t));

10 }
11 (...)
12 }

Listing 4.4: Code added to the function that processes a CREATE cell after it has been parsed.

structure, so that all communications from there onward may be delayed based on the specified delay

policy. Listing 4.4 shows the additions we made to the command_process_create_cell() function to im-

plement this processing and insert the delay policy into the circuit data structure, which is represented

by the circ variable.

Furthermore, we implemented some torrc [44] options to provide some customization to the system.

These options can be used in Tor’s configuration file, the torrc file, where a user can add and configure

torrc options to specify many aspects of how the Tor process should behave. One of the options

that we provide is called DisableDelays, which serves to allow ORs to fully reject delaying traffic and

performing traffic modulation, which can be seen being checked in line 6. After checking the internal

policy regarding the acceptance of traffic delaying and successfully obtaining the delay policy, the middle

node then appends to the CREATED cell a different magic number, which will inform the entry node of

the successful application of the delay policy. Similarly as before, the entry node checks the presence

of the magic number and, if found, appends it again to the EXTENDED cell that is sent to the client.

Finally, the client also checks the presence of the response’s magic number to confirm that the process

was successful, and the delay policy was accepted.

Additionally, we provide the client with the option to enforce the usage of the delay policy, through

another torrc option. When enabled, this option makes it so that a circuit is destroyed when the expected

magic number confirming the usage of the delay policy is not recognized. Listing 4.5 shows the additions
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1 int
2 created_cell_parse(created_cell_t *cell_out , const cell_t *cell_in)
3 {
4 (...)
5 /* SHAFFLER: Check the response magic number */
6 if (dprm_offset + 16 <= CELL_PAYLOAD_SIZE) {
7 cell_out ->delay_policy_is_set = tor_memeq(cell_in ->payload + dprm_offset ,

DELAY_POLICY_RESPONSE_MAGIC , 16);
8 }
9 (...)

10 }
11

12 int
13 circuit_finish_handshake(origin_circuit_t *circ ,
14 const created_cell_t *reply)
15 {
16 (...)
17 /* SHAFFLER: Check if circuit should be closed due to the delay policy failing to be set */
18 if (hop != circ ->cpath && hop == circ ->cpath ->next &&
19 get_options ()->EnforceDelayPolicy && !reply ->delay_policy_is_set) {
20 log_warn(LD_CIRC , "Expected delay policy to be set by the middle node , but wasn’t. Closing

.");
21 return -END_CIRC_REASON_TORPROTOCOL;
22 }
23 (...)
24 }

Listing 4.5: Code added to verify from the client side if a delay policy has been applied successfully.

made to the client to check the success of the process and to decide whether or not the circuit should

be closed.

Lines 18 and 19 show the necessary checks to verify the results of the attempt to set the delay policy.

First we verify that the current hop in the creation of the circuit is not the entry node, but instead the next

node, which is the middle node. After these verifications, we can check if the EnforceDelayPolicy option

is enabled, and finally check if the delay policy was applied successfully or not. If the delay policy is found

to not have been successfully applied in the correct hop, when using the enforce option, then we raise

an error and the circuit is closed.

Additional aspects: The reason we use magic numbers is to allow Shaffler to be compatible with the

unmodified Tor, which is also the reason we piggyback on existing messages, rather than adding more

types of messages to the circuit creation protocol. This way, if a middle node that is not running Shaffler

receives a cell with a delay policy, it will simply ignore it and everything will proceed normally.

The delay policy and the option to enforce it are both implemented in the form of torrc [44] options.

Additionally, each OR is also provided with options to configure its own delay policy, which will be used

when a client requests the “Auto” mode. These options as well as their format and default values can be

seen in Listing 4.6.

4.2.2 Applying delays

Due to the limitations discovered in our MVP’s method of applying delays, related to the inadequacy

of the nanosleep() function for this purpose, we searched Tor’s code base for implemented utilities

that could help us achieve our objective. Fortunately, we identified two promising structures already
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1 struct or_options_t {
2 (...)
3 /* SHAFFLER: Client torrc options */
4 int EnforceDelayPolicy;
5 int DelayMode;
6 double DelayParam1;
7 double DelayParam2;
8 double DelayMax;
9 /* SHAFFLER: OR torrc options */

10 int DisableDelays;
11 int AutoDelayMode;
12 double AutoDelayParam1;
13 double AutoDelayParam2;
14 double AutoDelayMax;
15 };

Listing 4.6: Code used to add new torrc options to the system, allowing the configuration of a delay
policy.
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Ready time

Figure 4.2: Diagram showing the process for delaying Tor cells. Includes the usage of a delay queue
that stores cells ordered by ready time (rtn ≤ rtn+1) and a single timer that waits for the first cell’s ready
time.

implemented in Tor that we decided to use: queues and timers. In the vanilla implementation of Tor,

when a cell is prepared to be sent through a certain communication channel to a certain peer, it is

placed in a queue. This queue, along with the queues of all other active channels, is then managed

by a scheduler. Our implementation involves making some changes to this process, by intercepting the

insertion of cells into these queues. Figure 4.2 shows a diagram representing this modified process.

We introduce an additional queue for each active channel, which we call delay queue. The purpose

of this queue is to store all cells that must be delayed and whose delay time has not yet been completed.

When a cell that must be delayed is received, it is inserted into the delay queue of the outgoing channel

and is only moved to the same channel’s cell queue upon completing their assigned delay time.

To update a cell when its assigned delay time has been completed, we use timers. These timers can

be configured with callback functions that are called after a specified time has passed. This allows us

to define a callback function that moves a given cell from one queue to the other, and with that, when a

cell arrives, we can create a timer with the desired duration and with that function as callback.

To implement this whole behavior, several functions were developed to organize functionalities as

best as possible and to keep the code readable. Listing 4.7 shows the delay_or_append_cell() function,

a high-level function that is called where previously the cell_queue_append() function was called, to

implement the alternative behavior of delaying cells instead of immediately appending them to the cell

36



1 void
2 delay_or_append_cell(packed_cell_t *copy , circuit_t *circ ,
3 cell_queue_t *queue , int direction)
4 {
5 if (circ ->magic != OR_CIRCUIT_MAGIC) {
6 cell_queue_append(queue , copy);
7 return;
8 }
9 or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);

10 if (or_circ ->delay_policy_is_set && or_circ ->delay_policy.mode != DELAY_MODE_NONE) {
11 cell_queue_t *delay_queue;
12 tor_timer_t *timer;
13 copy ->ready_tv = get_ready_timeval(or_circ , direction);
14 if (direction == CELL_DIRECTION_OUT) {
15 delay_queue = &or_circ ->n_delay_queue;
16 timer = or_circ ->n_delay_timer;
17 }
18 else {
19 delay_queue = &or_circ ->p_delay_queue;
20 timer = or_circ ->p_delay_timer;
21 }
22 cell_queue_append(delay_queue , copy);
23 // If no timer is already set to update the delayed cells , set one up
24 if (timer == NULL) {
25 schedule_delay_timer(circ , direction);
26 }
27 }
28 else {
29 cell_queue_append(queue , copy);
30 }
31 }

Listing 4.7: Code of the function that intercepts arriving cells and directs them to the appropriate queue.

queue.

First, the function checks if the circuit_t belongs to an OR or a client. If it belongs to a client, the

cell is appended to the cell queue, as before, since no cells should be delayed by clients. Otherwise, the

function checks if a delay policy is set and if the delay mode is not “None”. If so, the function calculates

the cell’s ready time and inserts it into the delay queue. Additionally, if no timer is already set to update

the delay queue, the function schedules a new timer to do so.

4.2.3 Modulating traffic

Our traffic modulation method relies on obtaining a value that we call ready time for each cell. When

a new cell must be delayed, the first thing that is done is to generate a delay value for it, based on the

delay policy. To generate this value, a function called get_delay_timeval() checks the delay policy and

calls the corresponding function to generate the delay value. By separating the code in this way, we

allow for the addition of new delay modes in the future, without requiring too many changes to the code

base.

The ready time for cell n is then calculated by adding the delay chosen for this cell to the ready time

of the last cell processed: ready timen = ready timen−1 + delayn. This ready time is stored along with

each cell, so it is possible to keep track of when it is ready to be moved to the cell queue. Listing 4.8

shows the function get_ready_timeval() that is responsible for calculating the ready time of a cell.

This method provides an important characteristic of order preservation, which not only ensures the
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1 struct timeval
2 get_ready_timeval(or_circuit_t *circ , int direction)
3 {
4 struct timeval previous_cell_tv , now_tv , delay_tv , ready_tv;
5 double ready; // in seconds
6

7 // Get last packet time
8 if (direction == CELL_DIRECTION_IN) previous_cell_tv = circ ->p_last_ready_tv;
9 else previous_cell_tv = circ ->n_last_ready_tv;

10

11 // If previous_cell_tv is too old , set it to now
12 gettimeofday (&now_tv , NULL);
13 if (previous_cell_tv.tv_sec < now_tv.tv_sec || (previous_cell_tv.tv_sec == now_tv.tv_sec &&

previous_cell_tv.tv_usec < now_tv.tv_usec)) {
14 previous_cell_tv = now_tv;
15 }
16

17 // Get delay
18 delay_tv = get_delay_timeval(circ , direction);
19

20 // Calculate ready time
21 timeradd (& previous_cell_tv , &delay_tv , &ready_tv);
22 ready = ready_tv.tv_sec + ready_tv.tv_usec / 1e6;
23

24 if (direction == CELL_DIRECTION_IN) circ ->p_last_ready_tv = ready_tv;
25 else circ ->n_last_ready_tv = ready_tv;
26

27 return ready_tv;
28 }

Listing 4.8: Code of the function that calculates the ready time for an incoming cell that must be delayed.

correct functioning of Tor but also allows us to check only the cell at the head of the delay queue for its

ready time. It also allows us to use a single timer to transfer cells from the delay queue to the cell queue,

reducing the resource usage of our solution. This timer is scheduled for the ready time of the cell found

at the head of the delay queue. When the timer is triggered, all the cells in the queue that are ready are

moved to the cell queue, in order, and the timer is rescheduled based on the new head of the queue.

The reason we check the ready time of multiple cells, and not only the head of the queue, is due to

the timer’s limited resolution of one millisecond. This means that differences of less than 1 millisecond

between cells’ ready times might cause both to be ready when the timer is triggered. Unfortunately,

this limited resolution also limits the possible delays by essentially rounding all delays to the nearest

millisecond.

4.2.4 Creating cover traffic

As described in Section 3.4, all components responsible for Shaffler’s cover traffic generation were

conceived to run on the user’s system. Since the goal is to ensure that all Tor traffic is directed towards

the same guard node, all components rely on the same underlying Tor process to access the network.

However, using the same Tor process in its default configuration is not sufficient to ensure that all circuits

share the same guard. Therefore, in the implementation of Shaffler, the torrc file was edited so that the

options UseEntryGuards, NumEntryGuards and NumPrimaryGuards were set to 1. It is relevant to note that

although it is possible to achieve the same outcome by choosing a specific guard node in the EntryNode

option, this approach could be problematic if the chosen node was unavailable.
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1 user_pref("extensions.torlauncher.start_tor", false);
2 user_pref("extensions.torlauncher.control_port", 9051);
3 user_pref("network.proxy.socks_port", 9050);

Listing 4.9: Code showing the user preferences configured in Tor browser to use a custom Tor process.

The user’s “regular client” can be any application just as long as it uses the aforementioned Tor

process as a SOCKS proxy. In order to avoid DNS leaks, this application should be configured to use

Tor as its DNS resolver as well. Shaffler’s prototype used the Tor Browser v12.5.1 as the “regular client”.

To use the custom Tor process of the system, the default browser profile was changed to include the

preferences shown in Listing 4.9.

The first preference prevents the Tor Browser from attempting to start its own Tor process (the default

behaviour), while the second and third preferences specify the control and SOCKS ports used by the

custom Tor process. The ports used in Shaffler’s prototype matched Tor’s default values of 9051 for the

control port and 9050 for the SOCKS port but these could have been different as long as they matched

the settings of the torrc configuration file. When using the Tor Browser, all DNS queries are made

through Tor by default and no further configuration was needed in that regard.

Cover OS: The cover OS implementation consists of a Web Server Gateway Interface (WSGI) appli-

cation written in Python 3.11.2 using the Flask v2.2.3 framework. It runs on a Gunicorn v20.1.0 WSGI

server and uses Nginx v1.25.2 as a reverse proxy. In order to setup the OS, the torrc file was fur-

ther changed to include the HiddenServiceDir and HiddenServicePort settings, making sure to redirect

traffic to the Nginx port.

The Flask application can run in different modes and exposes a set of endpoints whose response is

adjusted accordingly. The mode can be changed in a dedicated configuration file that allows for further

customization. Four modes were created with the following behaviour:

• Constant: The OS responds to the / endpoint with a predetermined amount of randomly gen-

erated bytes. An option Adjustable was included to toggle the ability to adjust the size of the

response. If this option is enabled, a request to the /set/<int> endpoint, where int specifies the

desired response size, will result in a new default behavior.

• Single Page: The OS responds to requests on the / endpoint by serving a predetermined web

page. Similarly to constant mode, the OS can be Adjustable or not. If this option is enabled, a

request to the /set/<string> endpoint, where string is the name of the desired web page’s main

HTML file, will result in a new default behavior.

• Multiple Pages: The OS serves a web page from a selection of preloaded templates. Each

request must specify which page to return. To this extent, the OS accepts requests to both the

/<int> and /<string> endpoints, depending on whether one intends to identify the web page by

its index in the templates directory or by the name of its main HTML file, respectively.

• Dynamic: The OS can respond with either randomly generated bytes or a web page. Each request
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must specify the intended response. In dynamic mode the OS will respond to requests to the

/<int> endpoint with int random bytes and to the /<string> endpoint with the respective web

page.

This implementation results in an OS whose behavior can be easily customized. One can choose

to run a flexible configuration, serving a large amount of different web pages, with a wide range of

fingerprints, a more rigid configuration where responses consist of a fixed amount of random bytes or

something in between.

Cover client: The cover client was implemented as a Python script that periodically sends requests

to the OS. Its behavior is heavily dependent on the OS configuration since both the available end-

points and the responses themselves vary with it. The script relies on either the requests (v2.31.0) or

requests_html (v0.10.0) python libraries, depending on whether the expected response is a collection

of bytes or a web page that needs to be rendered. As is the case with every other component of the

cover traffic infrastructure, the cover client accesses the Tor network via the custom Tor process men-

tioned above. Doing so implied configuring the cover client to use said process both as a SOCKS proxy

and DNS resolver, making sure to not cache any of the OS’s responses.

To orchestrate all cover traffic components, a manager was implemented using Go v1.20. The main

function of the manager is to spawn and monitor all the components, ensuring that the “regular client”

does not send traffic to the network unless adequate cover is being generated. To this extent, the com-

ponents are spawned in a specific order. First is the Tor process, followed by the OS (both the Gunicorn

server and the Nginx reverse proxy), the cover client and, only if everything launched successfully, the

“regular client”. For each component, the manager launches a goroutine tasked with spawning the

respective process. Once the process is correctly launched, the same goroutine signals main and pro-

ceeds to enter a monitoring mode. If, at any point, one of the processes crashes, its goroutine signals

main to trigger a recovery sequence or a full restart of the system.

Changes required to allow testing using Shadow: The main method used to test the Shaffler sys-

tem was the Shadow network simulator [45]. However, the then current implementation of Shadow

lacked support for the kernel function fork(), which is essential for processes to be able to spawn other

processes as children. This limitation made it impossible to execute the full implementation of the cover

traffic technique using Shadow, since it relied not only on a manager process that would spawn all other

required processes, but also on various other applications that also used the fork() function internally,

such as Nginx and Gunicorn.

For this reason, the implementation had to be adapted to simplify it as much as possible without

changing its functionality. The Shadow-specific version used neither the WSGI server (Gunicorn) nor

the reverse proxy (Nginx), directly running a normal web server instead. Additionally, the manager,

previously used to spawn both the client and the server-side processes, was abandoned. As a conse-

quence, all instructions to launch the required processes had to be manually inserted into the simulation

configuration.
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1 − path : / usr / b in / python3
2 args : setup . py −c . . / . . / . . / conf / cover − con f i g . json
3 s t a r t t i m e : 210
4 e x p e c t e d f i n a l s t a t e : { ex i t ed : 0}
5 − path : / usr / b in / python3
6 args : . / t r a f f i c g e n / os / app . py −p 8000
7 s t a r t t i m e : 245
8 e x p e c t e d f i n a l s t a t e : running
9 − path : / usr / b in / python3

10 args : . / t r a f f i c g e n / c o v e r c l i e n t / c l i e n t . py
11 s t a r t t i m e : 300
12 e x p e c t e d f i n a l s t a t e : running

Listing 4.10: Shadow configuration template used to add the three cover traffic processes to each client’s
configuration.

To insert these configurations into an already created simulation, we used a python script that copied

a configuration template to each client’s configuration. Listing 4.10 shows the template used, in YAML

format, which includes the three processes previously mentioned.

Summary

This chapter described the implementation of the Shaffler system. We began by describing the imple-

mentation of the MVP, which was used to test the viability of the system as well as some basic ideas.

Then we described the full implementation of the system, which includes all of the functionalities de-

scribed in Chapter 3, such as the encoding and decoding of delay policies, the application of delays,

and the creation of cover traffic. We also described the technical limitations of our solution, such as the

limited resolution of the timers used to apply delays, and the modifications that we had to make to the

cover traffic system to be able to simulate it on Shadow. Next, we present our evaluation of Shaffler.
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Chapter 5

Evaluation

This chapter describes the evaluation of Shaffler. We begin by outlining our approach, which includes

outlining our objectives, the metrics we collected and analyzed, and how we collected them. Then we

present and discuss the effectiveness and performance results of multiple configurations of the two

mechanisms provided by the Shaffler system, traffic modulation and cover traffic. Finally, we analyze

the results, correlating and balancing the defenses provided against the performance impact.

Our evaluation will be presented using a gradual approach, studying first the effects of various config-

uration options of each technique in isolation, to refine our knowledge of each technique, before merging

them and presenting the best results obtained for the Shaffler system, which confirm its effectiveness

and viability in terms of performance.

5.1 Methodology

This section describes the methodology used to evaluate our system. We begin by presenting our

evaluation’s goals and procedure. Next, we list and describe the metrics used to evaluate both the

defenses provided and the performance of the system. Lastly, we describe in detail our dataset collection

method, which is an essential component for the ability to evaluate our system.

5.1.1 Goals and Procedure

The primary purpose of this evaluation is to assess the amount of protection that the Shaffler system can

offer against traffic correlation attacks while maintaining a satisfactory level of performance. Additionally,

to support this primary objective, we also aim to investigate various possible configurations of the two

techniques employed by Shaffler, both independently and in conjunction, so that we can understand

the effects of each costumizable option, and in the end find the best configurations that the system can

provide.

To measure resistance to traffic correlation attacks, we rely on DeepCoFFEA [21], the state-of-the-art

traffic correlation attack. This attack requires that a machine learning model be trained with datasets of

artificially correlated flows. Although it would be possible to simply use a model trained with real Tor
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datasets to test our system, it would likely lead to unrealistic results of efficacy of our system, due to

the substantial differences between the train and test datasets. As such, we decided to train specialized

models for each configuration of our system. By combining this with the experimentation of different

attack parameters, we ensure that we get closer to the maximum accuracy of the attack.

Regarding performance, we rely on the Shadow simulator [45] (v3.0.0), together with several sup-

porting tools, such as tornettools v2.0.0 [46], OnionTrace v1.0.0 [47], and TGen v1.1.1 [48]. From all

of these tools, the only one we directly use is tornettools, as it serves as a simple interface for all other

tools by allowing us to generate realistic simulation configurations, to simulate networks with a fractional

size of the real Tor network based on real data. Additionally, it provides tools to easily obtain various

performance metrics during simulations and even export them to graphs. Furthermore, in addition to the

performance results, we also use these simulations and tools to obtain the datasets mentioned above.

5.1.2 Metrics

To evaluate Shaffler, we required metrics that would allow us to measure the effectiveness of the de-

fenses provided by the system, as well as another set of metrics that would allow us to measure the

impact on the performance of the system. In this section, we describe the metrics used for both pur-

poses.

Correlation metrics: By default, the DeepCoFFEA attack outputs, for each similarity threshold used

to classify flows as correlated or uncorrelated, the following metrics:

• True Positive Rate (TPR) – the percentage of all correlated flows that are correctly identified as

correlated. Calculated using Equation 5.1.

TPR =
#TP

#TP +#FN
(5.1)

• False Positive Rate (FPR) – the percentage of all uncorrelated flows that are wrongly identified as

correlated. Calculated using Equation 5.2.

FPR =
#FP

#FP +#TN
(5.2)

• Bayesian Detection Rate (BDR) – the percentage of all flows identified as correlated that are

truly correlated. Calculated using Equation 5.3, where P (P ) is the probability that a flow pair is

correlated and P (N) is the probability that a flow pair is not correlated.

BDR =
TPR× P (P )

TPR× P (P ) + FPR× P (N)
(5.3)

However, these metrics are not very practical to compare the results obtained with different configu-

rations of Shaffler, since it is hard to compare the three metrics for each configuration, while also taking

into account the various similarity thresholds tested. These similarity thresholds, in our scenario, are
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the values that determine how similar two flows (ingress and egress) must be for them to be considered

related. This means that, for example, a higher similarity threshold will lead to a higher TPR, however,

it will also come at the cost of a higher FPR and a lower BDR. As such, we require metrics that allow

us to pinpoint the similarity threshold for which these trade-offs are optimized so that we can compare

results more accurately and fairly. As such, we decided to calculate and use F1-score and P4. Both are

compound metrics that can be calculated using the number of True and False positives (#TP and #FP)

and the number of True and False negatives (#TN and #FN) of a classification problem’s outcome.

Precision =
#TP

#TP +#FP
(5.4)

Recall =
#TP

#TP +#FN
(5.5)

F1score =
2

1
Precision + 1

Recall

(5.6)

The F1-score metric is based on both Precision (given by Equation 5.4) and Recall (given by Equa-

tion 5.5). Precision is indicative of the amount of “positive” classifications that were actually correct,

while the recall, so far referred to as TPR, is indicative of the amount of positive samples actually clas-

sified as such. The F1-score is defined as the harmonic mean of precision and recall and is given by

Equation 5.6. F1-score gives great importance to a classifier’s behavior with respect to the “positive”

samples and can, to some extent, neglect performance with respect to the “negative” ones.

Specificity =
#TN

#TN +#FP
(5.7)

NPV =
#TN

#TN +#FN
(5.8)

P4 =
4

1
Precision + 1

Recall +
1

Specificity + 1
NPV

(5.9)

Because of these characteristics of the F1-score we sought a second metric that would not base itself

so heavily on the “positives”, trying instead to be as balanced as possible. This decision stems from the

objective of Shaffler to not only reduce the amount of “true positives” but also reduce the amount of

“true negatives”. It so happens that a new metric, P4, was recently proposed with the objective of

addressing the shortcomings of the F1-score [49]. In addition to Precision and Recall, P4 is also based

on Specificity (given by Equation 5.7) and Negative Predictive Value (NPV) (given by Equation 5.8).

Specificity reflects the amount of “negative” samples that are correctly classified as such (the “negative”

equivalent of Recall) while negative predictive value is indicative of the amount of correct predictions out

of all “negative” classifications (the “negative” equivalent of precision). Similarly to the F1-score, P4 also

consists of a harmonic mean (given by Equation 5.9), this time involving all four components – Precision,

Recall, Specificity and Negative Predictive Value.

Performance metrics: To evaluate differences in performance, we use the metrics that are provided

by tornettools. By default, simulations generated by tornettools include 100 perfclients, which serve
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to perform several performance measurements throughout the simulation. Of all the metrics that we

obtained, we found the following to be the most useful to compare different configurations of Shaffler.

• Transfer Time – the time it takes to transfer an amount of data N from a server.

( N ∈ {50KiB, 1MiB, 5MiB} )

• Error Rate – the percentage of data streams that end in failure, for example, due to timeouts.

5.1.3 Dataset Collection

For the purpose of evaluating the effects of the Shaffler system on the DeepCoFFEA attack’s ability to

correlate traffic, we required the development of a way to create compatible datasets. As previously

mentioned, to generate and collect those datasets, we use the Shadow network simulator, which allows

us to simulate a network running our modified version of Tor. Additionally, we use tornettools to gen-

erate a realistic network configuration with a fractional size of the real Tor network, which we modified

to as closely as possible resemble the data set collection method described by Oh et al. [21]. Due to

limitations in the resources available to perform these simulations, we decided to simulate networks with

0.5% the size of the real Tor network.

The required datasets are composed of pairs of files, where one file contains the capture of a flow at

the ingress of the circuit and the other contains the capture of the same flow at the egress of the circuit.

More specifically, these files contain timing and size information on all packets in the relevant flow.

To make the collection of these datasets possible, it was necessary to overcome two main chal-

lenges. The first of those challenges was how to capture the timestamps and sizes of packets within

the simulation. Fortunately, Shadow provides a configuration option for simulated hosts that enables the

capture of all their network packets in PCAP format. All captured packets had their Transmission Con-

trol Protocol (TCP) payloads intentionally discarded, as the headers already provide us with both the

timestamp and the size of the packets. Immediately discarding this unnecessary information was also

possible thanks to another configuration option provided by Shadow that allowed us to limit the capture

to 24 bytes per packet, which is the minimum amount necessary to capture both the Internet Protocol

(IP) and TCP headers. This was essential, as storing full captures of all simulated packets would quickly

become infeasible when collecting datasets of the size required by DeepCoFFEA. We activated both of

these configuration options on the client hosts to capture the ingress flows and on the server hosts to

capture the egress flows. This deviates slightly from the method described by Oh et al. [21] that consists

of using a proxy server to capture the egress flows. This change was made possible due to the ability to

set up and monitor the servers, which allows us to capture the flows without the need for a proxy server.

The second challenge was how to collect flows in an efficient manner while remaining able to keep

track of the pairings of captures. Although it would be possible to simulate and capture each flow of the

dataset one at a time, it would be very inefficient. However, by simulating and capturing multiple flows

at the same time, it becomes harder to keep track of which flow each packet belongs to. To overcome

this difficulty, we designed a method consisting of running N clients, each with a unique identifier i, and

configuring all servers to listen on a range of N ports, one for each client. Clients then simply need to
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Figure 5.1: Simulation configuration used for the dataset collection.

calculate the destination port for all their flows using the formula: portci = 10000 + i, where i ∈ [1, N ].

This setup is depicted in Figure 5.1, with N = 300. This number of clients results in approximately

23000 pairs of flows collected when simulated for a total time of 2 hours, where each pair spans 1

minute. Additionally, the total simulation time of 2 hours included a one-time setup period of 5 minutes,

as well as 30 seconds of wait time between each flow generated by the clients.

Lastly, after running the simulation and obtaining the packet captures for all the flows, we needed

to extract and parse those captures. For this purpose, we developed a Python [50] script that parses

the simulation results using dpkt [51] and creates the dataset in the format used by DeepCoFFEA. The

parsing script is divided into two phases. The first phase is the staging phase, where the simulation

configuration file is parsed to extract and organize all the information related to each flow, such as start

time, client’s identifier, and corresponding destination port. This information is organized into a JSON

file together with the identifiers generated for each flow and in a manner that allows the following phase

to be as efficient as possible, such as sorting all flows based on start time, which prevents having to,

in the worst case, traverse the whole list of flows to find the flow that a packet belongs to. The second

phase is the parsing phase that is performed separately for each client and server, where all packets

belonging to relevant flows are identified and their timestamps and sizes are added to the corresponding

flow’s output file.

The output format consists of two directories: the inflow directory that includes flows captured at the

ingress of the circuit and the outflow directory that includes flows captured at the egress of the circuit.

As such, a pair of flows is made up of two files with the same name, one in each of the two directories.

5.2 Traffic Modulation Results

In this section, we present and discuss the experimental results of various traffic modulation configu-

rations of Shaffler. We start by presenting the Tor vanilla results, that is, the results of unmodified Tor,

obtained through our experimental methodology. Then, we present a series of studies of various charac-

teristics of the configuration options provided for traffic modulation, with the objective of understanding

the effects of these options on the accuracy of the DeepCoFFEA attack and on the performance of the

system.
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Figure 5.2: Graph showing the results of the DeepCoFFEA attack for varying similarity thresholds, when
using the “Vanilla” dataset.

Although the results of the traffic modulation technique shown in this section are less than desirable,

it is important to perform this isolated evaluation to understand and compare the effects that the various

configuration options may have on both the accuracy of the attack and the performance of the system.

Only in Section 5.4 will we present the evaluation of traffic modulation and cover traffic generation com-

bined, as well as the best results obtained for the Shaffler system, which confirm its effectiveness and

viability in terms of performance.

5.2.1 Tor Vanilla Results

To enable the evaluation of the effects of traffic modulation on the accuracy of the DeepCoFFEA attack,

we need Tor vanilla results to compare with. For this purpose, we used Tor version 0.4.7.13, instead of

Shaffler, together with the collection method described above, to generate a dataset that we could run

the DeepCoFFEA attack on.

Figure 5.2 shows a plot of the metrics TPR, FPR, BDR, F1-score and P4 obtained for varying sim-

ilarity thresholds. The X-axis of the graph displays a selection of similarity threshold values, which, as

mentioned previously, determine how similar two flows must be to be considered related. Meanwhile,

the Y-axis reflects the metric values, spanning from 0 to 1. When the similarity threshold is set to 60,

the BDR, F1-score and P4 values are close to 0, due to the large number of false positives that result

from such a high threshold. However, we can see that a threshold of around 10 seems to be enough to

achieve TPR ≈ 1.00, making it meaningless to further increase the threshold, as it will only increase the

FPR. This also explains why the BDR, F1-score and P4 metrics follow curves that achieve a maximum

value for a similarity threshold close to this one, since the increase in number of false positives affects

negatively all of these metrics.

By comparing these results with those obtained by Oh et al. [21] using a real traffic dataset, we see

48



Similarity Thresholds

M
et

ric
s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

TPR FPR BDR F1-score P4

(a) Normal(µ = 20, σ = 5)

Similarity Thresholds

M
et

ric
s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

TPR FPR BDR F1-score P4

(b) Normal(µ = 20, σ = 10)

Similarity Thresholds

M
et

ric
s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

TPR FPR BDR F1-score P4

(c) Normal(µ = 30, σ = 5)

Similarity Thresholds

M
et

ric
s

0.00

0.25

0.50

0.75

1.00

0 20 40 60

TPR FPR BDR F1-score P4

(d) Normal(µ = 30, σ = 10)

Figure 5.3: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using the normal distribution with different parameters.

that the attack was more accurate using our dataset, achieving, for a certain threshold, TPR ≈ 99%

and BDR ≈ 95% simultaneously. This shows a difference of approximately 19% over the highest TPR

obtained by Oh et al. [21] simultaneously with BDR ≥ 95%, which is approximately 80%. This increased

accuracy is likely due to our method of collecting datasets, which uses a simulated network, instead of

a real network. Although not optimal, it is acceptable, since our objective is to use these results as a

baseline to compare all other results.

5.2.2 Mean and Standard Deviation of Delays

To study the effects of increasing the mean and the Standard Deviation (SD) of delay sizes, we naturally

chose to use a distribution that is defined by those parameters, the normal distribution. We selected two

values for each of the parameters and tested the four possible combinations of those parameters. The

values we chose for the mean (µ) were 20 and 30 and the values chosen for the SD (σ) were 5 and 10.

Effectiveness Results: Figure 5.3 and Table 5.1 show the results obtained by running the DeepCoF-

FEA attack with its default parameters on four datasets created with each of these four variants.

As expected, the mean parameter appears to affect the efficacy of the DeepCoFFEA attack the most,

with an increase of 10 milliseconds significantly decreasing the TPR and BDR curves and increasing the
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Modulation Function Max F1-score Max P4

Normal(µ = 20, σ = 5) 92.37% 96.03%
Normal(µ = 20, σ = 10) 92.51% 96.11%
Normal(µ = 30, σ = 5) 79.21% 88.40%
Normal(µ = 30, σ = 10) 78.50% 87.95%

Table 5.1: Maximum F1-score and P4 values obtained for each of the four tested configurations of the
Normal distribution modulation.

FPR curve. Additionally, a significant effect can also be observed on the F1-score and P4 values, which

decrease by approximately 14% and 8%, respectively. These results suggest that the accuracy of the

attack is reduced as the mean size of the delays increases.

However, it is likely to also be a result of the small window size used as the default parameter for the

DeepCoFFEA attack. This parameter specifies the duration of each decision window in seconds, and it

is reasonable to assume that longer delays reduce the likelihood of a flow being completely contained

within a window. Therefore, further in this section, we present experiments to confirm this hypothesis

and determine if a larger window size can indeed reduce the large delay’s effectiveness.

Also interesting to note is the minimal effect that the SD appears to have. In one case, a higher

value of SD slightly increases the accuracy of the attack, increasing the F1-score by 0.14% and the P4

by 0.08%, and in the other case it decreases it, although by a larger amount, decreasing the F1-score by

0.71% and the P4 by 0.45%. These minimal and inconsistent changes of less than 1% do not allow us to

conclude with certainty what effect SD has on the accuracy of the attack. However, they do suggest the

possibility of an increase in SD resulting in a slight increase in accuracy, which is likely due to the wider

range of delays from which it is possible to select.

Performance Results: To study the effects on performance of increasing the mean and SD, we also

collected some performance results for the same four sets of parameters. The most notable of these

results are shown in Figure 5.4.

Regarding transfer times, we can see that they increase significantly as the mean increases, as

expected. For example, while the transfer time of 50KiB for both functions with mean µ = 20ms varies

between 2 and 3.25 seconds, for both functions with mean µ = 30ms it instead varies between 3 and

4.25 seconds. However, SD does not appear to have such a significant effect. The results of the two

sets of parameters with mean 30, suggest a negligible effect, whereas the results with mean 20 seem

to suggest some minor but relevant effect. However, a detail might explain this observation, which is

the fact that the normal distribution with µ = 20 and σ = 10 results in a probability of 2.3% of selecting

a delay lower than 0. When such a thing happens, because negative delays are not allowed, Shaffler

discards them and selects a new value, resulting in a minor increase in the mean delay size. With this in

mind, we expect the transfer times obtained with µ = 20 and σ = 10 to be slightly higher than the times

obtained with µ = 20 and σ = 5, which can be observed in our results. As such, this suggests that SD

has negligible or no effect on transfer times.

It is also important to note how the results of the normal distribution with µ = 30 are missing from the
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Figure 5.4: Performance results obtained by tornettools for all four tested configurations of the Normal
distribution.

1MiB transfer times graph. This is due to the tool used, tornettools [46], defining the time limit for the

transfer of 1MiB to be 60 seconds. This, together with the higher error rate seen in Figure 5.4 (c), allows

us to conclude that when using a normal distribution with µ = 30, the 1MiB transfer times are always

higher than 60 seconds.

To interpret these results in a practical manner, we can relate them to the median weight of a web-

page, which is approximately 2MB, according to Web Almanac 2022 [52], a report published by the

HTTP Archive on the state of the web in 2022. As such, we can interpret our results as taking more

than 1 minute to load half of a web page of median size, when performing traffic modulation with a mean

delay size of 30 milliseconds. We can also interpret these results by comparing them with the results

obtained when no traffic modulation is performed (Vanilla) to quantify the impact on performance. Based

on the maximum amount of time taken to transfer 1MiB in the Vanilla simulation being 5 seconds, we

can calculate the impact on the transfer time to be at least a 12× increase.

Although the reduction in attack accuracy obtained may be significant, the impact on system perfor-

mance shown by these results suggests that the usage of the traffic modulation technique by itself may

not be a viable way to defend against traffic correlation, as it affects usability in an unacceptable way.

However, the possibility remains that the traffic modulation technique may prove to be an effective and

relevant addition to the system, when both techniques are combined, the results of which we will show

in Section 5.4.
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Figure 5.5: Graphs showing the effects on accuracy of increasing the window size of the DeepCoFFEA
attack to 7 seconds, for the “Vanilla” dataset and the Normal(µ = 30, σ = 10) dataset.

5.2.3 Attack parameters

The DeepCoFFEA attack has three main parameters: the number of decision windows to use, the size in

seconds of each window, and a value specifying how many seconds each window overlaps each other.

All accuracy results shown previously were obtained with the default configuration: 11 windows that span

5 seconds each, with overlaps of 3 seconds. Since the usage of traffic modulation essentially expands

a flow over time, increasing the distance in time between a packet’s entry and its exit from the circuit, we

hypothesized that larger windows of decision would be more effective. As such, to verify our hypothesis,

we trained and tested DeepCoFFEA with multiple datasets, including the same datasets used to obtain

the results previously shown in Figure 5.3, but configured it to use 11 windows spanning 7 seconds

each and overlapping by 4 seconds. Figure 5.5 shows the results obtained by running the attack with

the modified parameters on both the “Vanilla” dataset and the Normal(µ = 30, σ = 10) dataset.

Comparing these results with those obtained previously, shown in Figures 5.3 and 5.2, we observed

that the accuracy of the attack improved significantly for each of the datasets in which traffic modulation

was performed, but reduced for the Vanilla dataset. Specifically, the Tor vanilla results revealed a de-

crease in F1-score of 6.42% and in P4 of 3.36%, while the Normal(µ = 30, σ = 10) revealed an increase

in F1-score of 10.29% and in P4 of 6.11%, as shown in Table 5.2. Therefore, we can confidently conclude

that our hypothesis is confirmed and that the DeepCoFFEA attack can be reconfigured to successfully

reduce the protection provided by our traffic modulation technique.

However, these results are not enough to conclude that there is a linear trend of increased window

sizes resulting in better accuracy. To verify this, we also tested the Normal(µ = 30, σ = 10) dataset with

the configuration of 11 windows that span 9 seconds each, with overlaps of 5 seconds. The results of

this experiment can be seen in Figure 5.6.

Comparing the F1-score and P4 values obtained for each of the tested sets of DeepCoFFEA attack

parameters, summarized in Table 5.2, we can see that although increasing window sizes and overlaps

appears to improve the accuracy of the attack for traffic modulation datasets, there is a limit to this

improvement, as at some point the accuracy starts to decrease again, rather than continuing to increase.
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Figure 5.6: Graph showing the effects on accuracy of increasing the window size of the DeepCoFFEA
attack even further to 9 seconds, for the Normal(µ = 30, σ = 10) dataset.

Modulation Function Window Size Window Overlap Max F1-score Max P4

V anilla 5s 3s 98.73% 99.36%
V anilla 7s 4s 92.31% 96.00%

Normal(µ = 30, σ = 10) 5s 3s 78.50% 87.95%
Normal(µ = 30, σ = 10) 7s 4s 88.79% 94.06%
Normal(µ = 30, σ = 10) 9s 5s 80.33% 89.09%

Table 5.2: Maximum F1-score and P4 values obtained for increasing window sizes and overlaps of the
DeepCoFFEA attack, when using the Normal distribution modulation.

Specifically, we see an increase of 10.29% in F1-score and of 6.11% in P4 for the first increase in window

size, and a decrease of 8.46% and 4.97% in F1-score and P4, respectively, for the second increase in

window size. This leads us to conclude that the parameters used with the attack must be carefully tuned

to achieve its best results of accuracy. Furthermore, combined with the observation that the “Vanilla”

results with increased window sizes are worse than the results with the default window size, we can

conclude that the best configuration of the DeepCoFFEA attack is highly dependent on the modulation

function used and its parameters.

5.2.4 Other Modulation Functions

In addition to the modulation function based on the normal distribution, which we used for simplicity

of the analysis, we tested all other modulation functions implemented in Shaffler, which are listed in

Section 4.2. With the objective of performing as complete a search as possible, we decided to test

and evaluate a minimum of 3 sets of parameters per function. On top of that, we also experimented by

varying the parameters of DeepCoFFEA, as mentioned previously, to make sure that promising looking

results were not easily defeatable.

The results of all of these experiments revealed a general trend that confirmed our previous findings.

That is, the effectiveness of the DeepCoFFEA attack is highly dependent on the mean size of the delays,
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Figure 5.7: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using each modulation function with parameters configured to result in a mean of delays equal to
20 milliseconds.

with higher means resulting in lower accuracy, and modulation functions with similar means resulting in

similar accuracy results. This is likely due to packets never being shuffled, instead always maintaining the

same order, which allows the attack to easily identify patterns by combining volume analysis with timing

analysis. Additionally, we found that the performance impact is also highly dependent on the mean size

of the delays, which was highly expected, since the delays were limited with an upper bound of 100ms,

which is not a large enough value to singlehandedly disrupt the performance of any communication. As

such, as long as the mean size of the delays is not too high, smaller delays selected for other packets

will highly likely compensate for the larger delays, resulting in a similar performance to the usage of a

function that, for example, selects a constant delay of the same size as that mean size.

To further verify these findings, we performed an additional experiment, where we ran a simulation for

each of the implemented modulation functions, configuring them all with the corresponding parameters

that lead to a delay mean of 20 milliseconds. For some of these functions, where the mean is not obvious

given the parameters, such as the Lognormal and the Exponential functions, we wrote a Python script

using Scipy [53] to generate 100000 values with the corresponding distribution, and then calculate the

mean of those values.

Figure 5.7 and Table 5.3 show the results obtained by running the DeepCoFFEA attack with the

default parameters on all the generated datasets for this experiment.

These results confirm our previous findings, that the mean size of the delays is the most important
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Modulation Function Max F1-score Max P4

V anilla 98.73% 99.36%
Uniform(min = 0,max = 40) 91.98% 95.82%
Normal(µ = 20, σ = 5) 92.37% 96.03%
Poisson(λ = 20) 93.17% 96.46%
Exponential(λ = 0.05) 88.11% 93.67%
Lognormal(µ = 2.875, σ = 0.5) 91.73% 95.68%

Table 5.3: Maximum F1-score and P4 values obtained for modulation functions configured to result in a
mean of delays equal to 20 milliseconds.
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Figure 5.8: Performance results obtained by tornettools for each modulation function configured to
have a mean of delays equal to 20 milliseconds.

aspect of a modulation function, as the accuracy of the attack is similar for all modulation functions

with similar means, with the exception of the Exponential function, which is slightly less accurate. This

difference is not significant enough for us to be able to conclude that the Exponential function is more

effective than the other functions, however, it is interesting to note that, in general, functions with a wider

range of possible delay values, such as the Exponential(λ = 0.05) function, that can select delays as

high as 100ms, appear to be more effective at reducing the accuracy of the attack than functions with a

narrower range of possible delay values, such as the Normal(µ = 20, σ = 5), which will virtually never

select a delay higher than 45ms. Specifically, we observe a difference of 4.26% and 2.36% in F1-score

and P4, respectively, between the Exponential(λ = 0.05) and the Normal(µ = 20, σ = 5) functions.

Furthermore, regarding the performance impact, which can be seen in Figure 5.8, we can see that

the results of all modulation functions with the same mean are all extremely similar, which is expected

and consistent with our previous findings.

5.3 Cover Traffic Results

In this section, we present and discuss the experimental results of various configurations of Shaffler.

We start by presenting the new Tor vanilla results we had to obtain due to resource limitations. Then,

we present and discuss the effects of varying the amount of cover traffic generated per request, as

well as the effects of varying the amount of time between requests. Finally, we present the results of
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Figure 5.9: Graph showing the results of the DeepCoFFEA attack for varying similarity thresholds, when
using a “Vanilla” dataset generated by simulating 200 clients.

an experiment where we tested the effects of using multithreading to achieve concurrent cover traffic

requests.

5.3.1 Tor Vanilla Results

Due to the additional processes required to generate cover traffic exhausting our available resources,

we had to reduce the number of clients that capture traffic for the dataset creation to 200, instead of the

300 used to obtain the results shown in Section 5.2. As such, in order to make fair comparisons, we had

to obtain new Tor vanilla results, which we did by running the DeepCoFFEA attack on a dataset obtained

through the previously described collection method, but with only 200 clients, using Tor version 0.4.7.13.

Figure 5.9 shows a plot of the new TPR, FPR, and BDR obtained for various similarity thresholds.

Comparing these results with those shown in Subsection 5.2.1, we can see that the accuracy of the

attack decreased slightly, with the maximum F1-score being lower by 1.78% and the maximum P4 being

lower by 0.91%. This is expected, as the DeepCoFFEA attack benefits from having more data to train

the model with. However, the difference does not seem significant enough to interfere with our analysis.

5.3.2 Amount of Traffic per Request

We started by analyzing the effects of the amount of cover traffic generated on the accuracy of the

DeepCoFFEA attack. For this purpose, we selected 15 seconds as the period for the requests, i.e. the

amount of time between each cover traffic request, as it seemed reasonable. We then experimented

with three different amounts of cover traffic: 10KB, 100KB, and 1MB. Figure 5.10 and Table 5.4 show

the results obtained by running the DeepCoFFEA attack with its default parameters on three datasets

created with each of the three amounts of cover traffic tested.

As expected, the results show that the more cover traffic is generated, the less accurate the attack
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Figure 5.10: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using three different amounts of cover traffic.

Request Size Request Period Max F1-score Max P4

10KB 15s 74.63% 85.46%
100KB 15s 73.83% 84.94%
1MB 15s 69.98% 82.33%

Table 5.4: Maximum F1-score and P4 values obtained for three different configurations of cover traffic
with different amounts of generated data per request.

becomes. However, it is interesting to note how small of a difference each increase in the amount of

cover traffic makes, especially when compared with the difference between the Tor vanilla results and

the worst of these results, which reveal a massive drop of 22.32% in F1-score and of 12.99% in P4,

respectively. Specifically, when increasing the amount of cover traffic by 10×, from 100KB to 10MB, the

F1-score and P4 reduce by 3.85% and 2.61%, respectively. This suggests that, while the amount of cover

traffic generated does affect the accuracy of the attack, it quickly reaches a point of diminishing returns.

Furthermore, Figure 5.11 shows the performance results obtained for three simulations, one for

each previously mentioned configuration, where all clients send cover traffic following that configura-

tion. These results suggest that these rates of generation of cover traffic have a negligible impact on

performance, as the transfer times are very similar to each other and to those obtained with the Vanilla

simulation, i.e., all configurations show similar Cumulative Distribution Function (CDF) curves for each

transfer amount. For instance, as seen in graph (b), the time taken to transfer 1MiB of data was ap-

proximately 1 to 4 seconds for all configurations. This is likely due to the total rate of traffic generated

by the clients being very low, ranging from 0.67KiB/s (10KiB/15s) to 66.67KiB/s (1MiB/15s), which

is significantly lower than the rate of traffic usually generated by web browsing or video streaming, for

example.

5.3.3 Period of Requests

The other basic parameter for the generation of cover traffic is the period of requests, i.e. the time

between each cover traffic request made to the OS. This parameter mainly affects the frequency of oc-

currence of peaks in traffic sent by the OS. To evaluate its effects on the DeepCoFFEA attack’s accuracy,

57



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
exit Transfer Time (s): Bytes=51200

0.0

0.9

0.99

0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94
0.95

0.96

0.97

0.98

CD
F 

(ta
il 

lo
g 

sc
al

e)

Vanilla
Const#10K#15s
Const#100K#15s
Const#1M#15s

(a) Transfer Time (s) of 50KiB

0 1 2 3 4
exit Transfer Time (s): Bytes=1048576

0.0

0.9

0.99

0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94
0.95

0.96

0.97

0.98

CD
F 

(ta
il 

lo
g 

sc
al

e)

Vanilla
Const#10K#15s
Const#100K#15s
Const#1M#15s

(b) Transfer Time (s) of 1MiB

0 5 10 15 20
exit Transfer Time (s): Bytes=5242880

0.0

0.9

0.99

0.1
0.2
0.3
0.4
0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94
0.95

0.96

0.97

0.98

CD
F 

(ta
il 

lo
g 

sc
al

e)

Vanilla
Const#10K#15s
Const#100K#15s
Const#1M#15s

(c) Transfer Time (s) of 5MiB

Figure 5.11: Performance results obtained by tornettools for three different configurations of cover
traffic with different amounts of generated data per request.

Request Size Request Period Max F1-score Max P4

100KB 15s 73.83% 84.94%
100KB 10s 71.58% 83.43%
100KB 5s 76.60% 86.74%

Table 5.5: Maximum F1-score and P4 values obtained for three different configurations of cover traffic
with different periods of requests.

we selected two more period values in addition to the previously tested 15 seconds: 10 seconds and 5

seconds. We then tested each of these values with the three amounts of cover traffic tested previously.

Figure 5.12 and Table 5.5 show only the results of the three experiments that used 100KB of cover traffic

per request, as the results for the other two amounts of traffic are very similar.

The results showed that decreasing the period significantly reduced the accuracy of the attack. For

example, with the reduction in period from 15s to 10s resulting in a drop in maximum F1-score and P4

of 2.25% and 1.51%, respectively. However, curiously, the 5-second period provided the worst results.

After careful analysis, we concluded that this is due to 5 seconds being too little time for the generation

or transfer of any significant amount of cover traffic.

Timeouts: When using a single thread or process to handle cover traffic requests, a problem arises,

since a new request can only be started after the previous one has ended. Consequently, in order to
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Figure 5.12: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using three different periods of requests.

maintain the specified rates, the timeouts were selected as equal to the period of requests. This resulted

in experiments with low periods of requests, constantly timing out requests, limiting the amount of traffic

that could be generated. This is supported by the fact that the results obtained with a period of requests

of 5 seconds are exactly the same for each of the three amounts of cover traffic tested.

5.3.4 Concurrent Requests

A possible solution to the limitation found when using a period of 5 seconds is to separate the timeout

value of the requests from the period of the requests, allowing the timeout to be higher than the period.

One way of doing this is through the usage of threads that are distributed in time, such that the requests

are not made at the same time but may overlap. To evaluate the effects of this approach, we tested an

adaptation of the 1MB every 15 seconds configuration to this new approach, using 2 threads, which can

be summarized as 500KB every 7.5 seconds. Figure 5.13 shows the results obtained by running the

DeepCoFFEA attack with its default parameters on the dataset created with this experiment.

Comparing these results with those obtained with 1MB every 15 seconds, shown in Figure 5.10 (b),

we can see that the accuracy of the attack is significantly reduced. Specifically, a reduction in F1-score

of 10.7% and a reduction in P4 of 7.9%. This can probably be attributed to the fact that this approach

allows us to better distribute the same amount of cover traffic over time, resulting in fewer moments

with no cover traffic being generated, where an attacker may be able to observe and learn real traffic

patterns.

5.4 Full System Results

In this section, we present and discuss the experimental results of Shaffler with both techniques enabled:

traffic modulation and generation of cover traffic.

In Section 5.2, we hypothesized that the unsatisfactory results of the traffic modulation technique

were probably due to the preservation of the order of packets, which allows the DeepCoFFEA attack to

easily identify patterns by combining volume analysis with timing analysis. While the obvious solution
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Figure 5.13: Graph showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using 2 threads to generate cover traffic at a rate of 500KB every 15 seconds each.

Cover Configuration Modulation Function Max F1-score Max P4

None Lognormal(µ = 2, σ = 0.5) 96.98% 98.47%
500KB every 15s, 2 threads None 59.28% 74.43%
500KB every 15s, 2 threads Lognormal(µ = 2, σ = 0.5) 20.89% 34.55%

Table 5.6: Maximum F1-score and P4 values obtained for each technique independently and when using
both techniques simultaneously.

would be to shuffle the packets, our idea was to instead use cover traffic to disrupt the patterns identified,

by shuffling that traffic together with the protected flow at the ingress of the circuit. Analogously, we

hypothesized that the results obtained through the usage of cover traffic would also be improved by the

usage of traffic modulation, as the delays added would disrupt the adversary’s ability to match packets

observed at the ingress and egress of the circuit, based on the expected time between observations.

To test these hypotheses, we decided to compare the results of each technique used independently

with the results obtained when both techniques are used simultaneously, with the exact same parame-

ters. For this purpose and based on our hypothesis that small delays would be enough to significantly

improve traffic correlation protection, we chose a modulation function with a low mean delay size, and

consequently a low impact on performance, Lognormal(µ = 2, σ = 0.5). Regarding the cover traffic

configuration, we decided to use the same configuration that resulted in the lowest accuracy results in

Section 5.3: 2 threads requesting 500KB every 15 seconds each.

Figure 5.14 and Table 5.6 show the results obtained by running the DeepCoFFEA attack with its

default parameters on the three created datasets, one using only traffic modulation, another using only

cover traffic, and the last one using both techniques.

By comparing the results of these three experiments, we observe that both techniques seem to

complement each other, as the results obtained with both techniques are significantly better than the

results in which each technique was used independently, achieving an impressive maximum F1-score of
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Figure 5.14: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using each technique independently and when using both techniques simultaneously.
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Figure 5.15: Graphs showing the results of the DeepCoFFEA attack for varying similarity thresholds,
when using both techniques simultaneously, with different parameters.

20.89% and P4 of 34.55%. Furthermore, the fact that a modulation function with such a low mean delay

size, which is not enough to provide any relevant protection on its own, is enough to significantly impact

the accuracy of the attack when used together with cover traffic, suggests that our hypothesis might be

correct and that small delays seem to be enough to disrupt timing analysis.

Although the results obtained and shown in Figure 5.14 (c) reveal an outstanding protection against

traffic correlation, some might consider it more than necessary, especially considering that the impact

on performance is still significant, increasing the transfer times of 1MiB by 15.5 to 17 seconds compared

to Tor vanilla. As such, we decided to test altering the parameters of the Lognormal function to reduce

the mean delay size. The parameters chosen were µ = 1.5 and σ = 0.5, which result in a reduction

in the mean delay size from 7 to 4.5 milliseconds, compared to the parameters previously used. After

performing this test, we decided to also attempt to reduce the amount of cover traffic generated, from

500KB each 7.5 seconds to 250KB each 7.5 seconds, as we also wanted to verify the impact that

reducing the amount of cover traffic generated would have when used together with traffic modulation.

Figure 5.15 and Table 5.7 show the results of both experiments, as well as the results obtained with the

best configuration previously shown, for comparison.
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Cover Configuration Modulation Function Max F1-score Max P4

500KB every 15s, 2 threads Lognormal(µ = 2, σ = 0.5) 20.89% 34.55%
500KB every 15s, 2 threads Lognormal(µ = 1.5, σ = 0.5) 29.15% 45.14%
250KB every 15s, 2 threads Lognormal(µ = 1.5, σ = 0.5) 39.05% 56.16%

Table 5.7: Maximum F1-score and P4 values obtained for decreasing levels of protection provided by
each technique.
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Figure 5.16: Performance results obtained by tornettools for three different datasets obtained by using
both techniques simultaneously, with different parameters.

Furthermore, the performance results obtained for each of these experiments can be seen in Fig-

ure 5.16. These results show us that there is room in the Shaffler configuration parameters to adjust

the trade-off between protection and performance. For example, the results obtained for the function

Lognormal(µ = 1.5, σ = 0.5), which has a lower mean, show a reduction of around 7 seconds in the

transfer times of 1MiB, while still being able to achieve respectable maximum F1-score and P4 values of

29.15% and 45.14%, respectively. Additionally, the similar reduction in protection observed when reduc-

ing either the mean delay size or the amount of cover traffic generated suggests that users of the system

may choose which technique to reduce the strength of, based on their needs or capabilities. An example

of this is a user that has a limited amount of bandwidth available, who may choose to reduce the amount

of cover traffic generated, instead of reducing the mean delay size, while another user that has more

available bandwidth may choose to reduce the mean delay size instead, to reduce their latency.
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Summary

This chapter discusses the experimental results of running the DeepCoFFEA attack on datasets gen-

erated by Shaffler with various parameter configurations. The results highlight the attack’s sensitivity to

the mean delay size: higher means yield lower accuracy, and modulation functions with similar means

produce similar results. Additionally, the impact on performance is also closely related to the mean de-

lay size. The volume of traffic per cover request and the period of cover requests were also found to

significantly affect the accuracy of the attack, with diminishing returns after a certain point. Finally, we

found that both techniques are complementary, resulting in significantly better protection against traffic

correlation when used in combination. We also found that there is room in the Shaffler configuration

parameters to allow users to adjust the trade-off between protection and performance while maintaining

acceptable results in both aspects. Next, we present our main conclusions of this thesis and elaborate

on future directions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Traffic correlation attacks are a big threat to the Tor network, as they can be used to deanonymize users,

defeating the purpose of the network. In this work, we have explored the problem of traffic correlation

attacks on the Tor network and proposed a system to decrease their effectiveness. Our approach is

based on the combination of two defensive techniques: traffic modulation and cover traffic generation.

We have designed and implemented a version of Tor that is fully compatible with the existing Tor

infrastructure, and allows traffic modulation to be configured by a client and performed by the middle

node of a circuit. We have also designed and implemented a method for clients to generate cover traffic

to add confusion to the ingress of a circuit with minimal impact on the network, and without affecting real

web services with fake requests.

Through our evaluation of this system, we discovered that the use of both techniques simulta-

neously results in significantly better protection against traffic correlation than the use of each tech-

nique independently. The best results have been obtained when using a moderate amount of cover

traffic (2 threads generating 500KB every 15 seconds each) together with the modulation function

Lognormal(µ = 2, σ = 0.5), which was not enough to provide any relevant protection on its own. Achiev-

ing an impressive reduction, compared to vanilla Tor, of 76.06% and 63.9% in the maximum F1-score

and P4 results for the attack, respectively. Although these results come at the cost of performance,

increasing the transfer times of 1MiB by 15.5 to 17 seconds, we also found that there is room in the

Shaffler configuration parameters to reduce the strength of each technique. As such, users can adjust

the trade-off between protection and performance while maintaining an acceptable level of protection.

To exemplify this, we also presented the results of the same cover traffic configuration together with a

modulation function with lower mean (Lognormal(µ = 1.5, σ = 0.5)), which resulted in a reduction of

around 7 seconds in the transfer times of 1MiB, at the cost of worsening the F1-score and P4 results for

the attack by only 8.29% and 10.59%, respectively.

We have also observed that the mean delay size is a critical characteristic of all modulation func-

tions, significantly influencing both the accuracy of traffic correlation attacks and the performance of
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the system, with higher means decreasing the accuracy of the DeepCoFFEA attack and substantially

increasing the time required to transfer data to a network destination. Furthermore, our findings suggest

that larger ranges of possible delay values may have a negative impact on attack accuracy. However,

unlike the results related to mean delay sizes, these were not as conclusive and would benefit from

additional experimentation.

Regarding cover traffic generation, we discovered that, contrary to the traffic modulation technique,

it can be a significantly effective defense against traffic correlation attacks by itself, without affecting the

latency of real communications. Additionally, from our experiments, we also learned that higher rates

and volumes of cover traffic decrease the accuracy of these attacks, as expected.

6.2 Achievements

The main achievement of the present work is the design and implementation of Shaffler, a modified

version of Tor that introduces traffic modulation and cover traffic generation techniques to decrease the

effectiveness of traffic correlation attacks. Additional accomplishments of this thesis include: (i) full com-

patibility of Shaffler with the current Tor infrastructure, to allow a gradual deployment; (ii) configurable

parameters for Shaffler, to allow users to adjust the trade-off between protection and performance; (iii)

an in-depth study of the effects of multiple configuration options of Shaffler on the effectiveness of traffic

correlation attacks and on the performance of the network; (iv ) an in-depth study of the trade-offs and

viability of Shaffler’s defensive techniques.

6.3 Future Work

The present work has focused on the design and implementation of Shaffler, a system that combines

traffic modulation and cover traffic generation techniques to reduce the effectiveness of traffic correlation

attacks. However, there are still some areas of the system that can be improved and additional research

that can be done to further investigate the solutions to traffic correlation attacks proposed by our system.

To begin with, the current implementation of Shaffler uses timers to delay cells, which restrict the

resolution of the delays that can be applied. Therefore, a beneficial improvement would be to implement

an alternative to these timers, that is able to provide better time resolution. This would enable us to

examine the effects of the increased time resolution on the effectiveness of the system.

Secondly, the current implementation of Shaffler requires users to manually configure the system

parameters. Thus, another useful improvement would be to implement a mechanism to automatically

adjust the parameters of the system, for example, based on a set of modes, to allow users to more easily

adjust the trade-off between protection and performance.

Furthermore, the current implementation of Shaffler does not take into account the current network

conditions. Consequently, another useful improvement would be to implement a mechanism to automat-

ically adjust the parameters of the system, based on current network conditions, to avoid overloading

the network. This could be done, for example, by sending identifiable cover packets through the cover
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traffic loop and measuring their latency. The system could then base itself on this latency to, for instance,

dynamically tweak the rate at which cover traffic is generated.

Finally, the current evaluation of Shaffler has focused on the effectiveness of the system against the

DeepCoFFEA attack. Another beneficial improvement would be to conduct a study of the effectiveness

of the system against other traffic correlation attacks, other than DeepCoFFEA, such as DeepCorr [20].

Additionally, all evaluation of Shaffler presented in this thesis has focused on simulation experiments.

Thus, it would be useful to verify all results by performing experiments using emulation instead.
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